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Abstract. This paper examines a principal-agent problem in continuous time
with ambiguous information. A problem of this nature arises in an employment
relationship where there is limited knowledge, or ambiguity, about the tech-
nology that governs performance. To address this problem, this contribution
connects models of the contracting problems in continuous time with models
of decision making under ambiguity in continuous time. The connection pre-
serves their tractability in analysis. By means of computed examples, I show
that taking ambiguity into consideration results in compensation schemes that
feature robustness and durability. Intuitively, when expectations about future
outcomes are highly pessimistic, as in the worst-case scenario, the certainty of
immediate payments becomes relatively more attractive. The unique optimal
way for this preference for certainty to be mutually beneficial to parties with
conflicting interests is to bind them together in a durable contract with little
sensitivity to outcomes. By systematically incorporating ambiguity, the for-
mulation proposed provides a possible rationale for simpler contracts, thereby
responding to criticisms levelled at existing theories of contracts that predict
compensation schemes that are unrealistically sensitive to performance.

1. Introduction

In contractual relationships, parties often do not have precise knowledge about
the economic environment. Understanding of the role of contracts in such realistic
environments is a central theme in economics. How do firms structure the pay-
ments and payments to workers when there is uncertainty about how their effort
relates to performance? How do entrepreneurs find finance for their unique ideas?
How do banks design venture capital contracts to motivate scientists towards a
promising yet untested technology? Why do high-tech firms show high tolerance
for failure? Why are real world contracts so simple? This paper develops methods
and results that shed light on such problems.
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In this paper, I formulate a continuous-time principal-agent problem that incor-
porates a rich structure for uncertainty and examines the dynamics of incentives.
I identify the ways uncertainty influences incentives to the agent over time. I
analyze the relative strength of immediate payments and delayed rewards in mo-
tivating agents. I also investigate the sensitivity of payments and rewards to the
experience under an optimal contract. Furthermore, I analyze how the costs of
creating incentives and the dynamic properties of the optimal contract depend
on the nature of uncertainty.

I consider a dynamic contracting model where a principal and an agent engage
in a contractual relationship with unobservable effort. The agent likes consump-
tion and dislikes effort and the principal enjoys profits from output. The agent’s
unobservable effort input influences output with uncertainty. For a given effort,
output evolves according to a Brownian motion with a drift term that belongs
to a set. This is the main departure from most of the principal-agent literature.
Rather than assuming that the map from effort to the evolution of output is
known, as is common, I assume that this map is known only imprecisely. The
parties know instead that the effort maps onto a set of probability distributions
over output. I assume that each party does not have a prior belief about which
outcomes are more likely, and I call this uncertainty ‘ambiguity’ (the use of ter-
minology in relation to the decision theory literature is clarified below). Further-
more, the principal and the agent evaluate the technology according to their own
worst case. One may view my model of ambiguity as a model of robustness in
the presence of model uncertainty. My motivation for this choice is related to the
model of robustness consideration developed by Hansen and Sargent [33, 34].

The principal and the agent share the same understanding of this ambiguous
technology and each evaluates the technology according to his/her own worst-
case scenario, which reflects robustness in their choice criteria. The special case
in which the set has a single element reduces to the standard agency problem. At
the beginning of the contracting relationship, the principal commits to a history-
dependent contract that specifies wages to the agent at every moment in time
contingent on the entire past output realizations. The principal only offers a
contract that ex ante generates him positive profits under his worst case. The
agent requires at least his outside value to participate in the contract at every
moment and after every past history. I show that, under broad conditions, the
unique optimal contract features simplicity: the agent’s wage does not vary too
sensitively with output. Moreover, the optimal contract features tolerance on the
part of the principal: the contracting relationship has durability and does not
end after early failures.

The main intuition for the new results, in broad terms, is that the sensitivity of
delayed payments to output realization loses its incentive effects when parties in a
contracting relationship are faced with ambiguity over technology. Pessimism over
the expectation of uncertain future outcomes according to the worst case makes a
certainty of immediate values in the relationship relatively more attractive. The
unique optimal way for this preference for certainty to be beneficial to parties
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with conflicting interests is to bind them together into a durable contract with
little sensitivity to outcomes.

The importance of the finding can be viewed in several different ways. First,
the formulation proposed addresses a long-standing problem in contract theory,
i.e., why, in the real world are simple contracts so common? Commonly studied
agency models predict that performance-sensitive and contingent compensation
should be common. However, contrary to these predictions real world contracts
are simple.1 Moreover, when tasks are complex and difficult to execute and de-
scribe, standard mechanisms are ineffective.2 The pay-for-performance nature of
standard agency contracts does not reflect the durability and tolerance of early
failures that are commonly observed, especially in innovative firms with uncertain
technologies.3 The model presented here is rich enough to account for the toler-
ance for early failures and the rewards for long-term success that are commonly
observed in firms operating in non-quantifiable uncertainty. Therefore, the mod-
eling approach with ambiguity presented here thus offers a realistic description of
these important problems and provides new explanations to help resolve them.

Secondly, the paper introduces a simple mathematical result that provides a
methodological tool to address more complex dynamic incentive problems with
tractability. I generalize the standard moral hazard problem into a technology
with ambiguity by introducing a single simple additive term. This simplicity is
due to the analytical advantage of the connection established here in a tractable
way between two models in continuous time: the moral hazard problem with
risk and decision theory under ambiguity. This connection uses the intuitive
distinction made by Knight [45] between different forms of uncertainty: risk and
ambiguity. Risk, as in the classical case, refers to the situation where there is
a known probability distribution associated with each action. Ambiguity, on
the other hand, as in our case, refers to a situation where the information is
too imprecise to summarize likelihoods into a single probability distribution, and
instead there is a set of probability distributions associated with each action. The
classic work of Knight [45] and Keynes [43] emphasized the role of ambiguity in the
real world decision making. In my model, I assume ambiguity about technology
and consider behavioral response to it. Thirdly, the assumptions in the model
that allow broader uncertainty are quite mild. In this way, the framework is
flexible enough to be applied to the practical design of incentive contract where
non-quantifiable uncertainty defines an important aspect of reality.

In the present contribution, I develop the framework in continuous time because
the methods using it enables me to formulate the agency problem in a convenient

1See, for example, Bhattacharyya and Lafontaine [6], Chu and Sappington[12] and the references
therein.
2See, for example, in the context of venture capital financing, Kaplan and Strömberg [42].
3The effective role of this dynamic property and the ineffectiveness of performance-sensitive
incentive schemes in encouraging innovations was first raised by Holmstrom [39]. See Manso
[47] for a recent treatment, and Tian and Wang [61] and the references therein for recent
evidence on venture capital.
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recursive manner and I can implement simple computational procedures to an-
alyze the properties of the optimal contract relative to the different sources of
uncertainty. My formulation leads to a simple ordinary differential equation that
incorporates ambiguity as one additive term and discounts values for the worst
case. This equation incorporates the key elements that determine optimal con-
sumption, effort, and the duration of the relationship relative to the strength
of ambiguity. I then extend the familiar methods of dynamic programming and
show that the evolution of the optimal contract is completely characterized by
using the drift and volatility of the agent’s value in the relationship. As in famil-
iar results in the literature on dynamic contracts, in my analysis I can completely
characterize the optimal contract using the agent’s continuation value as a single
state variable. The agent’s continuation value in a contract is the sum of future
expected utilities. Unlike in the previous literature, ambiguity adds the consider-
ation that the principal and the agent can a priori disagree on the worst case. In
my analysis I show that wages are increasing in output and therefore both parties
agree on the same worst-case. Finally, the solution offers insights into how the
nature of the optimal contract varies according to the nature of the uncertainty.

The present study contributes to the literature on moral hazard problems. It
is most closely related to Sannikov [54]’s model of moral hazard in continuous
time and into his framework introduces ambiguity about technology. Using the
formulation of ambiguous information and worst-case objectives from Chen and
Epstein [11] the present model offers a tractable formulation of the agency prob-
lem. Similar as in the classical moral hazard problem the dynamics of contractual
relationship are characterized by two terms: the drift and volatility of the agent’s
value. The former is related to the allocation of payments over time. The first
novel finding is that the presence of ambiguity tempers the incentive effects of
back-loaded payments. This is because ambiguity aversion has a direct effect,
introducing one added term, which reduces the drift according to the worst case
objective. The intuition for this result is that the agent prefers the certainty of
wages received today over the expectations of uncertain future payments since the
expectations are valued according to the worst case. This is a dynamic version of
the intuition in static model of Gilboa and Schmeidler [28] that formalizes as a
worst-case objective people’s tendency to prefer known outcomes over ambiguous
ones, which is illustrated in Ellsberg [25]’s classic experiment.

Ambiguity also operates on incentives through its effect on the volatility of the
value. As in the classic case, a strong volatility of continuation value with effort
incentivizes the agent to work hard. The second novel finding in the present work
is that the presence of ambiguity and the agent’s aversion to it, however, reduces
incentive effect of this volatility by making smaller the marginal expected benefits
of effort since the expectation is evaluated according to worst case. Therefore,
ambiguity aversion acts like a effort cost. However, unlike the latter, the effect of
ambiguity aversion is forward looking as it is jointly determined in the optimal
contract by the worst-case scenario and the continuation value of the contract.
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In the optimal contract, ambiguity averse principal trades-off volatility of fu-
ture payments against certainty of immediate wages. In addition to the classic
dynamic moral hazard problem concern for ambiguity introduces two terms in to
the principals optimization problem in resolving this trade-off. The first is the
penalty in output due to the worst case and the second is the cost of providing
incentives to the agent through volatility in the continuation utility. The former
has a direct effect on the profit and reduces the drift of profits according to the
worst case due to the principal’s ambiguity aversion. The latter has an indirect
effect through the volatility in payments to the agent.

The trade-off in general depends on the nature of ambiguity, in particular
whether ambiguity increases or decreases with effort. It turns out that in either
case the direct effect dominates the indirect and principal’s profits are lower under
ambiguity relative to the case without ambiguity. Moreover in the optimal con-
tract the compensation scheme becomes flatter and volatility smaller relative to
the classical case. Intuitively, each party prefers the certainty of immediate pay-
ments and steady flow of values. Standard intuition in contract theory suggests
that this form of scheme does not have strong incentive properties. Durability
in a dynamic contract here provides incentives: a long relationship with stable
payments to the agent for his steady effort that generates steady profits to the
ambiguity averse principal, which he prefers. This is the main new explanation
the current work offers.

The present paper is also related to a growing literature on dynamic contracting
problems in continuous time,4 and to the microeconomic literature that examines
contracting problems and mechanism design in static settings (see Bergemann
and Schlag [5], Bodoh-Creed [9], Gottardi et al. [30] Bergemann and Morris [4]
and the references therein.) The latter work typically uses static models with
adverse selection rather than moral hazard. Miao and Rivera [48] introduces ro-
bustness considerations into a dynamic contracting problem in continuous time.
They focus on the principal’s concern for robustness and their modeling of ambi-
guity builds on a model of multiplier preferences proposed by Anderson et al. [2]
and Hansen et al. [35], while it differs from the model in Chen and Epstein [11]
adopted here. Szydlowski [59] examines a dynamic contracting problem in con-
tinuous time with ambiguity. His model assumes ambiguity regarding the agent’s
effort cost and his preference representation differs from the model here. Discus-
sion of the closer relationship to the literature on the foundations of contracts is
delayed until after the full model and analysis of it is presented.

4Holmstrom and Milgrom [40], Schaettler and Sung [55], Ou-Yang [49], DeMarzo and Sannikov
[19], Biais et al. [7], Biais et al. [8], Sannikov [54], Grochulski and Yuzhe [31, 32] He [37],
He [38], Williams [62], Zhang [63], Piskorski and Tchistyi [51], Prat and Jovanovic [52], De
Marzo et al. [18], Cvitanic and Zhang [15], Zhu [64], and Szydlowski [59]. This literature
complements and extends the vast literature on dynamic contracts in discrete time including
Spear and Srivastava [57], Thomas and Worrall [60], Atkeson and Lucas [3], Albuquerque and
Hopenhayn [1], Clementi and Hopenhayn [13], Quadrini [53], DeMarzo and Fishman [17], and
DeMarzo and Fishman [16].
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The remainder of the paper proceeds as follows. Section 2 specifies the contract-
ing problem in continuous time with ambiguous information. Section 3 formalizes
the ambiguous information. Sections 4 specifies the utility values associated with
a contract. Section 5 presents a derivation of a tractable incentive compatibility
constraint under ambiguity. Section 6 derives the optimal contract and char-
acterizes its properties through parametric examples. Section 7 discusses the
close relationship of the new findings here to the existing literature. Section 8
concludes. Technical details are relegated to appendices in Section 9.

2. The contracting problem with ambiguous information

I present a model of a continuous-time principal/agent problem with ambiguous
information. The agent chooses effort at each instant of time at from a compact
set At. Following Sannikov [54], the choice of action process (at) determines the
realization of output {Xt} over time in a stochastic manner. Formally, I assume
that the total output Xt produced up to time t evolves according to a diffusion
process

dXt = θatt dt+ σdBt, (1)

where B = {Bt,Ft; 0 ≤ t <∞} is a standard Brownian motion under a reference
measure P ; as in standard moral hazard problems, the agent’s choice of effort
level at is privately observed; and the drift term θatt belongs to a set Θat

t . The
latter is the main departure from the literature that studies dynamic contracting
problems and I refer to it as ambiguous information. This generalizes the classical
case to allow for imprecise information regarding technology: the productivity of
actions is not perfectly known; rather, each party only knows that it lies in a set
Θa
t .
To illustrate, consider a special case of stationary and independent set of drift

terms so that θa ∈ µ(a) + κ(a)U , where µ maps effort into a set of drift terms as
in the classic case, U is the unit interval [−1, 1], and κ(a) is the size of the set of
drifts. From this special case, one can see that there is ambiguity about which
value in U will be realized after each time t and history of output realization. In
particular, any distribution over the interval U is possible and κ(a) determines the
strength of ambiguity. One interpretation of this specification is that the parties
to the contract are aware of the possibility that they have erroneous probabilistic
beliefs about the true technology µ(a) and seek robustness. The dependency of
κ(a) on the effort choice allows for general ways through which effort impacts the
strength of ambiguity. Taking κ(a) = 0 for all a reduces to a singleton drift term
and specializes to the classical contracting problem examined by Sannikov [54].
More generally, κ(·) can depend on time and history in arbitrary ways subject to
mild technical restrictions due to measurability requirements. In this way, one can
model large set of technological possibilities, including, for example, technologies
in which ambiguity about actions repeatedly selected over time decreases as a
result of experience and hence reflecting learning.

The problem I address here is the design of a contract by the principal when
there is ambiguous information, in the sense as defined here regarding the con-
tracting environment. Moreover, I assume that the agent and the principal have
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the same knowledge of the technology.5 Our aim is to solve and characterize the
optimal contract problem in this environment.

In the rest of this section I formulate the optimal choice of the contract by the
principle as an optimization problem. First I represent the ambiguous informa-
tion as a set of probabilities. Then using this set I specify an criterion for the
evaluation of the contract by the parties.

Following Epstein and Chen [11] ambiguous information is equivalently for-
mulated as a set of priors. The key observation is that a drift process (θt) is a
density generator: it induces a probability measure Qθ under which θtdt + σdZt
is a Brownian motion. This probability measure Qθ is determined by its density
with respect to the reference measure P using Girsanov exponential as follows

Qθ(ω) = exp

{∫ t

0

θsdBs −
1

2

∫ t

0

|θs|2ds
}
· P (ω). (2)

Each effort process (at) induces a set of drift terms Θa = {(θt) : θt ∈ Θat} and
the corresponding set of priors is

Pa = {Qθ : θ ∈ Θa and Qθ is defined by (2)}. (3)

In other words, ambiguity concerns the drift of the diffusion process for output and
parties to the contract do not know precisely which drift term governs the output
today. From Girsanov transformation one can see that ambiguity about drift can
equivalently be seen as specifying a set of probabilities for output realizations, as
in the classic theme of ambiguity in atemporal models.

The principal offers a contract to the agent, which specifies a stream of pay-
ments for consumption (Ct) and an incentive-compatible advice of effort (at),
both contingent only on the entire history of publicly observed output realiza-
tion. Effort input generates output with ambiguity so that the set of priors Pa
determines output realizations in a stochastic manner. I assume that each party
to the contract evaluate the contract using the worst-case criterion, on which
a priori parties do not have to agree. Accordingly, the principal contract offer
maximizes his expected profit under his worst-case criterion

F = min
Q∈Pa

EQ

[
r

∫ ∞
0

e−rtdXt − r
∫ ∞

0

e−rtCtdt

]
≥ 0 (4)

subject to delivering the agent a required outside value of at least Ŵ for all t

Vt(C, a) = min
Q∈Pa

EQ

[
r

∫ ∞
t

e−rt (u(Ct)− h(at)) dt|Ft
]
≥ Ŵ

and subject to incentive-compatibility

Vt(C, a) ≥ Vt(C, ã)

for all t and for all alternative actions ã 6= a.
The interest is in contracts that generate non-negative expected profits for

the principal. To gain tractability by exploiting the power of continuous-time
formulation the next section sets up keys features of the set of multiple priors.

5We discuss briefly the role of this modeling choice in the conclusion.
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3. The Set of Priors

The contracting problem as posed in a general form in (4) in Section 2 is dif-
ficult to solve. It allows for arbitrary dependence of uncertainty on the history
of actions and outcomes. However, little is known about solution methods appli-
cable at such generality. The tractability of the analysis of relies on representing
the values in contracting problem in a recursive manner. To do so, the formu-
lation in the present paper uses the decision theoretic model of choice under
ambiguity in continuous time presented in Chen and Epstein [11]. Their recur-
sive multiple-prior preference formulation in continuous time is a (non-axiomatic)
generalization of that by Epstein and Schneider [26] in discrete-time, which gen-
eralizes atemporal model of maxmin expected utility representation of Gilboa
and Schmeidler [28]. In this approach, utility functions are modeled as recursive
ambiguity averse preferences, and, under mild assumptions on the set of priors,
is represented recursively using continuation value as a state variable. Addition-
ally, the concern for ambiguity is reflected in one additional term added to the
martingale representation in the classical case and that term is determined by
the worst-case. In this section I will introduce dependence of the set of multiple
priors Pa on any effort process a and gradually establish that this can be done in
a tractable manner.

following Chen and Epstein, I model the set of one-step-ahead densities for any
effort process (at) via a process (Θa

t ) of correspondences from Ω into its range
RA ⊂ R, that is, for each t

ΘA
t : Ω RA.

The set of all measures that can be constructed by some selection from these sets
of one-step-ahead densities is defined using the following set of density generators:

Θa = {(θt) : θt ∈ Θa
t (ω) dt⊗ dPa a.e.}. (5)

Fixing an effort process to a constant, say zero, for each time t and ω specializes
to the formulation in Chen and Epstein. This property on the multiple priors
P in continuous time is a generalization of rectangularity introduced in Epstein
and Schneider [26] in discrete time The interpretation of rectangularity is that at
each instant of time, the increments in the diffusion process θt are independently
drawn from a family Θt. As shown by Epstein and Schneider [26] in discrete time
rectangularity of the multiple priors is consistent with the suitable axiomatization
of preferences that satisfy Gilboa-Schmeidler [28] axioms conditional on each
history realizations and the conditional preferences satisfy dynamic consistency.
In their framework and in its generalization to continuous time by Chen and
Epstein [11] rectangularity enables recursive relation in utilities by ensuring that
repeated local minimizations over the set of one-step-ahead conditional measures
replaces global minimization over P .

To present a recursive formulation, the framework for the contracting rela-
tionship in this paper adopts the modeling approach of specifying ambiguous
information as a rectangular set of multiple priors and generalize it to cases in
which ambiguity varies with action choices. The latter is important for incentive
compatibility as, in general, different efforts induce different multiple priors and
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the contracting parties might seek robustness to erroneous probabilities. In the
formulation here, one-step-ahead densities for any action process are taken as the
primitives for the analysis and can be specified arbitrarily. For any action process
(at), as shown in Chen and Epstein, any rectangular set of priors Pa is uniquely
generated by the set of densities of the form given in (5).

For the contracting problem at hand, unobservability of effort introduces a con-
sideration for incentive compatibility which affects the structure of the multiple-
priors that is not in general accommodated in Chen and Epstein’s framework. In
particular, the set of multiple priors changes if the agent deviates from the effort
process that the principal desires to implement with the contract. This section
therefore constructs a suitable generalization of the rectangularity of the set of
multiple priors to an arbitrary effort process. For the tractability, this construc-
tion is done in three stages, reflecting the various ways in which effort effects
the set of priors. These are variation in the base-line measure Pa, the variable
interval size Θa

t , and both, as (at) changes.
The main results of this section show, using mainly Girsanov’s theorem for

changes of measures, these generalizations are possible while preserving the key
properties of the set of priors, namely regularity that guarantees that the con-
tracting problem is well-defined, and “dynamic consistency” that enables recur-
sive representation. For reasons of simplicity we first consider fixing base-line
measure P and changing the interval size. For the sake of easing the illustration
I start with a particular case in which the set of drift terms are time and state in-
variant, is centered around zero, and depends on the effort: Θa

t (ω) = [−κ(a), κ(a)]
for each t and ω. Following the terminology introduced by Chen and Epstein we
denote this case as κ ignorance with variable interval.

3.1. kappa-ignorance with variable interval. On the standard Wiener space
(Ω,F , P ) the process (Xt) governing the agent’s output is a Brownian motion.
The agent’s technology is described by the set of drifts induced by his choices.
In a particular case examined by Chen and Epstein [11], the technology is char-
acterized by κ−ignorance. In particular, the base-line measure is augmented by
a family of measures using a process θ = (θt) that determines the size of the in-
terval which in the present sense captures (interpreted as) ambiguity associated
with each choice of action. This is the simplest case that generalizes Chen and
Epstein [11] while connecting with Sannikov [54]’s contracting problem. Consider
first a base-line ambiguity with base-line action of no effort. That is, under P
the process dXt = σdWt is a Brownian motion. Uncertainty is modeled as a
family of Brownian motions following analogous ideas in Chen and Epstein [11].
In particular, drift terms belong in a time-invariant set and are represented by a
process θ = (θt) with θt ∈ [−κ, κ] = µ(0)+[−κ,+κ]. Incentive-compatibility con-
sideration of a contract requires a comparison in a one-stage deviation sense and
accordingly I consider a more specialized set for the drift terms that: Θ0 := (Θt)
with Θτ = [−κ,+κ] for τ ≤ t and Θτ = [−κ̃,+κ̃] for τ < t ≤ T . That is,
up to a fixed time τ drift term is in set [−κ,+κ] and after then in [−κ̃, κ̃].
This interpretation is based on the following characterization. Taking the super-

martingale Zt = exp
(
−
∫ t

0
θsdWs

)
and noticing that

∫ T
0
||θt||2dt < ∞ and that
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E [ZT ] = 1 <∞ so that the supermartingale is actually a martingale (under the
measure P ), by Girsanov’s the change of variable [29] give that

W̃t = Wt −
∫ t

0

θsds, Ft, 0 ≤ t ≤ T

is a Brownian motion that possibly has different drift after τ .

The set of probability measures PΘ0 := {P̃ θ : θ ∈ Θ0} is equivalent to the
base-line measure P , that is absolutely continuous with respect to it. Conversely,
adapting arguments in Duffie (1996, pg. 289) any set of equivalent probabilities
can be constructed in this fashion. The interest is in showing that the set of
probability measures PΘ0 satisfies rectangularity or “time-consistency.” More
formally, let Θt : Ω  Rt,A,Ã be the progressively measurable correspondence

that maps paths to the drift terms where Rt,A,Ã = Θτ (Ω) = [−κ,+κ] for τ < t

and Rt,A,Ã = Θ(Ω) = [−κ̃,+κ̃] and take Θ to be the collection of all progressively

measurable selections from Θt 0 ≤ t ≤ T , that is, Θ = {(θt) : θt(ω) ∈ Rt,A, Ã dt⊗
dPA w.p.1}. The set PΘ therefore contains all the probability measures equivalent
to P constructed using (2) for all θ ∈ Θ0.

When the base-line measure is fixed, Girsanov’s theorem therefore shows that
the change of actions transforms the set probability measures equivalent (in the
sense of absolute continuity) to a base-line measure into another set of measures
equivalent to the same base-line measure. Since the set of all measures are con-
structed by some selection from the set Θ0 of one-step-ahead densities, adopting
the terminology from Chen and Epstein this establishes the rectangularity of
multiple priors

Lemma 1. The set PΘ0 of probability measures, under which the progressive
measurable processes Xt = θdt + σdBt for θ ∈ [−κ,+κ] are Brownian Motions
with drift θ, is rectangular.

This property ensures that the probability measures on the sample paths in-
duced by any change in action process at a later date is recognized from the
current period’s perspective. Its significance lies in representation of utility func-
tions recursively and thereby making the analysis tractable without having to
impose any restrictions as to which probabilistic models are more relevant for the
decision maker. In the latter sense, it corresponds to a situation where the agents
have learned “everything” relevant for the contractual relationship.

Next, I address a normalization assumed by Chen and Epstein [11], which in
our formalization of multiple priors corresponds to a particular choice of effort
process at = 0 for all t and ω. We show that the normalization can be replaced
by an arbitrary alternative probability measure while preserving time consistency
of the multiple priors.

3.2. kappa-ignorance with variable base measure. An important aspect of
the contracting problem is that different choices of effort by the agent not only
affect the set of drifts through the change in the size of interval but also through
a change in the base measure. The main result of this section in Proposition 1
shows that the normalization used by Chen and Epstein to a base measure P
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with respect to which the output process is a Brownian motion without a drift

and can be made to an arbitrary base measure P̃ .
To fully formalize the structure of the set of multiple priors as the base mea-

sure varies, first consider the case that different actions induce different base-line
measures but they have the same interval. Formally, let us assume that changing

the effort process from (At) to (Ãt) changes the family of probability measures
that gives Brownian motions (At + θt)dt + σdBt with drift in θt + [−κ,+κ] un-
der each of P θ

A measures corresponding to Zθ
A to the family that gives Brownian

Motions (Ãt + θt)dt+σdBt with drift in θt + [−κ,+κ] under each of P θ
Ã

measures

corresponding to Zθ
Ã

by transforming A to Ã through Girsanov theorem. Thus
the family obtained has measures each equivalent to PA. The family hereby is
rectangular set of probability measures. The rest of the section fills in the formal
details.

Take Girsanov exponential

Zθ
t = exp

(
−
∫ t

0

θsdB
A
s −

1

2

∫ t

0

||θs||2ds
)

(6)

and denote ΘA as the set of Girsanov exponentials Zθ
t associated with the pro-

cesses (θt): θτ ∈ [−κ,+κ] for 0 ≤ τ ≤ t and θτ ∈ (Ãt − At) + [−κ,+κ]. The
corresponding set of probability measures PΘA contains all possible measures that
can be generated using the probability densities. As in the case with variable in-
terval in kappa-ignorance Sect. 3.1, since the set of all measures are constructed
by some selection from the set Θ0 of one-step-ahead densities, I establish:

Lemma 2. The set of probability measures PΘA is a rectangular set of probability
distributions with a base-line probability measure PA.

Nothing in the previous line of reasoning depends on the processes (θt) except
that it satisfies weak regularity conditions in applying Girsanov and that it has

a bounded second moment, namely that EP (
∫ T

0
||θt||2dt) < ∞ P − a.e. By

construction, these conditions hold in the form of the ambiguity the contracting
problem deals with. In particular, taking a function for the drift term µ, which
is measurable and has a bounded second moment, in the role of θ the previous
analysis goes through and therefore:

Proposition 1. The set of probability measures PΘA,Ã,κ is a rectangular set of
probability distributions with a base-line probability measure PA.

Notice that in this case the base-line measure PA is the one that makes the
process dXt = µ(At)dt + σdBt Brownian motion. Note also that the base-line
probability measure PA is the center of the ambiguous set of probability distribu-
tions associated with the action A. It captures the notion of ambiguity formalized
by Dumav and Stinchcombe [24] and Siniscalchi [56] in which a set of multiple
priors is represented as the sum of its center and a set centered at zero.

In summary, the analysis in this section verifies that various sets of probability
distributions Pa that correspond to the set of drift terms Θa 5 and hence arise
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in formulating the contracting problems in continuous time satisfy time consis-
tency. This property will play an important role in the recursive representation
of the contracting problem below. Before this, I turn to examine the regularity
properties of the multiple priors.

3.3. Regularity Properties of the Set of Priors. The sets of priors that
arise in the contracting problem are ones that vary in base-line measures and in
the interval around the base-line by different choices of effort process. I examine
in this section whether these extensions preserve regularity properties (defined
below) so that the contracting problem is well-posed and admits a solution. I
show that the contracting problems with ambiguity satisfy required regularity
properties.

Chen and Epstein’s [11] formulation for decision problems uses 0 ∈ Θt(ω) dt⊗
dP a.e. In our case, this corresponds to taking κ(At) = 0 and setting base-
line measure to P : for each t ∈ (0, T ] so that µ(At) ∈ Θt(ω) dt ⊗ dPA a.e.
Intuitively, the agents consider the base-line measure to be the one that corre-
sponds to the center of the interval for the values of drift. Our main departure
is to allow dependence of the drift on the effort process. By Girsanov’s theorem
[29] for changes of measures, our base-line measure is equivalent to the base-
line. Therefore, this difference is but in looking at the processes equivalently.
Second, the measurability follows from from the fact that the correspondence
(t, ω) 7→ Θt(ω) which defines the set of priors through (3) when restricted to
[0, s] × Ω is B([0, s]) ⊗ Fs−measurable for any 0 < s ≤ T . The remaining reg-
ularity properties of the set are its compactness and convexity, and follow from
standard arguments. I collect these in the following result and its proof in the
appendix fills in the remaining details.

Proposition 2. The set of priors PΘ̃ satisfies:

(a) PA ∈ PΘ̃.

(b) PΘ̃ is absolutely continuous with respect to P and each measure in PΘ is
equivalent to P .

(c) PΘ̃ is convex.

(d) PΘ̃ ⊂ ca1
+(Ω,FT ) is compact in the weak topology.

(e) For every ξ ∈ L2(Ω,FT , P ), there exists Q∗ ∈ PΘ̃ such that

EQ∗ [ξ|Ft] = min
Q∈PΘ̃

EQ[ξ|Ft], 0 ≤ t ≤ T

Parts (a)-(c) are self-explanatory. By (d), min exists for any ξ ∈ L1(Ω,FT , P ),
a fortiori in L2(Ω,FT , P ). Part (e) extends the existence of a minimum to the
process of conditional expectations.

Having established rectangularity and regularity of the set of multiple priors
that arise we next move to give a recursive representation of the contracting
problem.
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4. Recursive utility in the contracting problem

The tractability of analysis in contracting problems in continuous time relies on
recursive representation of values to the contracting parties. This section shows
that the recursive utility formulation of Chen and Epstein [11] for decision prob-
lem under ambiguity generalizes to the contracting problem. The key observation
that allows for the generalization is that the contract variables consumption and
effort processes takes an analogous role of consumption processes in the analysis
of Chen and Epstein. The main difference is that the effort choice made in the
current period is imperfectly observed. The latter concern is not present in Chen
and Epstein. Insights from Sannikov’s [54] formulation relevant for the contract-
ing problem further our analysis in this case and I represent the utility from each
consumption and effort process specified in a recursive manner.

The main elements in our analysis builds on Chen and Epstein’s recursive for-
mulation which in turn uses recursive utility formulation in Duffie and Epstein
[22, 23]. Duffie and Epstein showed that, under suitable Lipschitz conditions
on contemporaneous utility function f , the recursive utility solves a Backward
Stochastic Differential Equation (BSDE) and satisfies the usual properties of
standard utilities (e.g., concavity with respect to consumption if the BSDE is
concave). Their analysis makes powerful use of the Martingale Representation
theorem and Girsanov’s theorem for change of measures. Our construction of
recursive formulation rests on these ideas.

The main result of this section shows that the value processes in the contracting
problem (4) under the minmax criterion has an equivalent recursive representa-
tion. As a preliminary step that specializes to Duffie and Epstein [23]’s formula-
tion, fix a contract (ct), take at = 0 and assume no ambiguity. In this case the
consumption process is measurable only with respect to the standard Brownian
motion under the reference measure P . Following Duffie and Epstein [23] the
expected utility process of any given consumption process (ct) is then defined by

V P
t = EP

[∫ T

t

f(cs, V
P
s )ds|Ft

]
. (7)

where f is an aggregator function that in general allows for non-separability over
temporal composition of utility flow. In the special case of our main interest we
assume the standard expected discounted utility f(c, a, v) = u(c)−h(a)−βv. In
this case, the value process is given by

V P
t = EP

[∫ T

t

e−β(s−t) (u(cs)− h(as)) ds|Ft
]
.

Under ambiguity given any action process a = (at) there is a set of priors PΘa

associated with set of Girsanov exponentials Θa induced by the action process
and the minmax criterion implies the following value to the agent

V a
t = min

θ∈Θa
EQθ

[∫ T

t

e−β(s−t)u(cs)− h(as)ds|Ft
]
. (8)

Our goal is to represent this value process recursively in a tractable manner. To
develop the analysis consider first with Duffie and Epstein [23] that the process
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in the standard expected utility specification is rewritten in a simpler recursive
form:

V P
t +

∫ t

0

f(cs, V
P
s )ds = EP

[∫ T

0

f(cs, V
P
s )ds|Ft

]
which is a martingale under P . The recursive formulation of value in this case
follows from the martingale representation theorem:

dV P
t = −f(ct, at, V

P
t )dt+ σPt · dBt, V P

T = 0 (9)

with the unique solution for the value process
(
V P
t

)
and the volatility process(

σPt
)
, where the dependence on the reference measure is noted by superscript

P . Using the fact that
∫ t

0
σPs dWs is a martingale and reversing the arguments

establish that the solution to the BSDE (9) for
(
V P
t

)
is the expected utility

process for (ct) in (7).
Using Girsanov Theorem one can change the measure from P to Qθ for each

θ and hence obtains the analogous representation of the utility process. By the
representation in Chen and Epstein [11] the value process solves the following
BSDE

dV θ
t =

[
−f(ct, V

θ
t ) + θt · σθt

]
dt+ σθt · dBt, V θ

T = 0 (10)

The additional additive term in drift relative to that in (9) accounts for the
change in measure.6 In the contracting problem by Sannikov [54], there is no
ambiguity and a contract induces a costly effort process (at) that generates an
outcome process with a drift µ(at) = at. Taking the latter in the role of (θt)
in (10) and using the standard aggregator, f(c, a, V ) = u(c) − h(a) + βV , gives
the recursive representation for the agent’s utility process in Sannikov [54] as a
(weakly) unique solution to the following BSDE

dV a
t = [−f(ct, at, V

a
t ) + µ(at) · σat ] dt+ σat · dBt, V a

T = 0 (11)

Building on this representation I introduce the notion of ambiguity (IID and
symmetric) for any effort process (at) which gives rise to a set of drift terms
µ(at) + Θa. Our main representation result is that under the minmax criterion
the expected utility process can similarly be represented as a diffusion process
by generalizing the representation of recursive utility in Chen and Epstein [11] to
allow for a family of drift terms that depends on the action process:

Proposition 3. Fix a contract (ct, at) ∈ D and let Θa be the corresponding set
of measures. Then:

(a) There exists unique processes (V a
t ) and (σat ) solving the BSDE

dV a
t =

[
−f(ct, at, V

a
t ) + µ(at) · σat − min

θ∈Θa
θt · σat

]
dt+ σat · dBt, V a

T = 0.

(12)

6For details on the use of the Martingale representation theorem and Girsanov thereom, see the
manuscript Duffie [21].
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(b) For each Qa ∈ PΘa , let (V Qa
t ) be the unique solution to (11). Then V a

t

defined in (a) is the unique solution to (8) and there exists Q∗ ∈ PΘa such
that

V a
t = V Q∗

t , 0 ≤ t ≤ T. (13)

(c) The process (V a
t ) is the unique solution to V a

T = 0 and

V a
t = min

Q∈PΘa
EQ

[∫ τ

t

f(cs, as, Vs)ds+ Vτ |Ft
]
, 0 ≤ t < τ ≤ T. (14)

The formulation of the recursive utility is related to Chen and Epstein [11]
due to ambiguity and to Sannikov [54] due to the contracting problem. The main
difference from the former is in generalizing the recursive utility formulation given
by Chen and Epstein to a family of drift terms that varies with the effort process
chosen by the agent motivated by Sannikov. The generalization follows from using
Girsanov’s Theorem that allows the changes of measures. and specializes to the
case examined by Sannikov by choosing Θa

t (ω) = µ(at) for each t and ω. We have
shown earlier in Proposition 2 that the notion of ambiguity that is modeled as
IID and symmetric between the principal and agent gives rise to the set of priors
which satisfies time-consistency and regularity conditions as defined in Chen and
Epstein. Accordingly, the regularity ensures that various value processes that
arise in contracting problem are well-defined and the rectangularity of the set of
priors allows us to replace the agent’s optimization under the entire contract with
a sequence of temporal optimization problems. This, together with two powerful
results from stochastic analysis, namely the martingale representation theorem
and Girsanov’s theorem for changes of measures, yield a recursive formulation for
the agent’s expected utility in a similar manner as in Sannikov. The interpretation
with maxmin criterion is that the agent evaluates a given contract under the
worst-case scenario which corresponds to the lowest drift induced by her effort
choice.

The last piece among the analytical results represents the primitive set (Θt)
in an equivalent functional form, using its support functions and this form is
more convenient in the theoretical development. Because each correspondence
Θt is convex-valued, its structure, by Hanh-Banach theorem in its supporting
functions form, can be represented by its support functions defined by

et(x)(ω) = max
y∈Θat (ω)

y · x, x ∈ Rd. (15)

The difference from Chen and Epstein [11] is the renormalization to the base-
line drift to µ(at) under the action process (at). Under this renormalization, the
support function is still Lipschitz continuous, convex and linear; and the joint
measurability holds: the map (t, ω) → et(x)(ω) is B([0, s]) × Fs−measurable on
[0, s] × Ω on (0, T ] × Rd. However, unlike in Chen and Epstein it need not be
non-negative as the normalization is not the origin for each effort choice but a
principal does not implement such an effort as an outside option that yields non-
negative value is always feasible. With these elements in place the proposition
follows from the following observations.
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Proof. (of Proposition 3)

(a) Since the support function e and the utility function are Lipschitz con-
tinuous and satisfy progressive measurability, the unique existence of the
solution to (11) and (12) follows from Pardaoux and Peng [50, Theorem
4.1.]

(b) With the renormalization, the set of density generators Θa to the base-line
measure µ(at) under the action process (at), as I show in Propositions 1
and 2, satisfy dynamic consistency and regularity defined in Chen and
Epstein. Furthermore, the Comparison Theorem applies the same way as
it does not depend on the structure of the set of density generators. It
therefore follows from analogous arguments as in Chen and Epstein [11,
Theorem 2.2 (b)].

(c) The analogous arguments from Chen and Epstein go through as they
do not depend on the particular choice of the normalization used as we
established in Propositions 1 and 2.

�
The analysis thus far has used a fixed terminal time T . This is mainly done

to bring forth the key elements in the analysis in a simple way. The contracting
problem, however, does not necessarily have a relationship for a predetermined
period of time. In particular, the continuation of a contract depends on the perfor-
mance within the relationship and there can be termination following sufficiently
many observations of poor performance or retirement when the continuation of
a contract becomes costly after good performances. The extension of the results
to allowing a stopping-time instead of a deterministic time horizon follows from
virtually the same way as it is done in Duffie and Epstein [22] for stochastic
differential utility.

Having established the recursive representation of value induced by any effort
process (at) I move to derive a tractable incentive-compatibility condition and
using it characterize the optimal contract. In the next section I formulate a “one-
shot deviation” principle from discrete-time dynamic games to verify incentive
compatibility of effort process given a contract.

5. Incentive compatibility under ambiguity

An effort process (at) is implementable if there is a contract that specifies
transfers (ct) to the agent given observable output realizations and that (at) is
compatible with the agent’s incentives, that is he chooses effort (at). We use this
standard definition for implementability of effort to determine the feasible set of
implementable contracts for the principal. We specialize the implementability to
the ambiguity regarding the drift term. Assume that for each effort process (At)
the associated multiple set of priors PA is equivalently characterized by the set of
drift terms ΘA using the formulation in (2) and (3). A useful characterization for
implementability follows below from representing agent’s value from a contract
as a diffusion process.

Proposition 4. (Representation of the agent’s value as a diffusion pro-
cess) For any contract (Ct) and any effort process (At) with its associated set of
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drift terms ΘA there exists a progressively measurable process (Zt) such that

Wt = W0+

∫ t

0

r

(
Ws − u(Cs) + h(As)+ min

θt∈ΘAt

θs|Zs|
)
ds+

∫ t

0

rZt(dXs−µ(As)ds)

(16)

for every t ∈ [0,∞).

Proof. For a given pair of processes (Ct) and (At) for transfers to the agent and
effort, respectively, define the valuation process V by

Vt = r

∫ t

0

e−rs(u(cs)− h(As))ds+ e−rtWt(C,A) (17)

where Wt(C,A) is the continuation value defined by

Wt = min
Q∈PΘA

EQ

[∫ ∞
t

e−rs (u(Cs)− h(As)) ds | Ft
]

By rectangularity of the multiple-priors, the valuation process (Vt) is a g−martingale.
Using the g−martingale representation theorem in Chen and Epstein [11], there
exits a measurable process Zt such that

−dVt = −κ∗t re−rt|Zt|dt− σre−rtZtdBA
t (18)

where Bt is a Brownian motion under the reference measure P ; κ∗t minθt∈ΘAt
θt|Zt|

is the worst-case drift; and the factor re−rtσ is a convenient rescaling. On the
other hand, differentiating (17) with respect to t one finds that

dVt = re−rt(u(Ct)− h(At))dt− re−rtWtdt+ e−rtdWt (19)

Together (18) and (19) imply that

re−rt(u(Ct)−h(At))dt−re−rtWtdt+e
−rtdWt = κ∗t re

−rtκ|Zt|dt+σre−rtZtdBA
t

=⇒ dWt = rκ∗t |Zt|dt+ σrZtdB
A
t − r(u(Ct)− h(At))dt+ rWtdt

This further implies

Wt = W0 +

∫ t

0

r

(
Ws − u(Cs) + h(As)+ min

θs∈ΘAs

θs|Zs|
)
ds+

∫ t

0

rZtdB
A
s

�

The analysis here is closely related to Sannikov’s representation. Compared to
the formulation in Sannikov [54] the analysis with ambiguous information intro-
duces a term κ∗(As)|Zs| which is interpreted as capturing the effect introduced
by ambiguity. The agent uses the worst case to evaluate a contract. Here the
worst case corresponds to the drift terms that yield the minimum value to the
agent. Using this observation I next present a tractable incentive compatibility
condition that characterizes the agent’s effort choice for a given contract in an
environment with ambiguity.
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Proposition 5. (The Agent’s incentives) For a given strategy A = (At), let
(Zt) be the volatility process from Proposition 4. Then A is optimal if and only
if

∀a ∈ A Ztµ(At)−h(At)+ min
θt∈ΘA

θt|Zt| ≥ Ztµ(at)−h(at)+ min
θt∈Θa

θt|Zt| dt⊗dP a.e.

(20)

Remark: Since the QA is equivalent to P by Girsanov’s Theorem, and hence has
the same zero-sets, without any loss in generality dt⊗dP a.e. replaces dt⊗dQA a.e.
in Sannikov [54].

The characterization uses analogous ideas from Sannikov, generalizes to am-
biguous information using the representation I develop earlier and finally applies
a version of the Comparison Theorem that has been helpful in establishing prin-
ciple of optimality in stochastic analysis. The following fills in the details.

Proof. Consider an arbitrary alternative strategy A′ that follows possibly different
actions A′τ up to t and afterwards continues with At. The effort process A′ induces
a set of densities ΘA satisfying the regularity conditions as specified earlier. The
corresponding set of multiple priors PQ′A is rectangular. The agent’s expected
payoff from this action process is well defined by

V ′t = min
Q∈PΘA′

V Q
t ,

where V Q
t is unique solution (ensured by Duffie and Epstein [23]) to BSDE

V Q
t = EQ

[∫ ∞
t

f(Cs, A
′
s, V

Q
s )

]
,

where in our formulation I use the standard aggregator, i.e., f = u(C)−h(A)−βV .
By [11, Theorem 2.2], V ′ is equivalently uniquely characterized as follows:

dV ′t =

[
−f(Ct, A

′
t, V

′
t ) + max

θ∈ΘA′
θtZ

′
t

]
dt+ Z ′tdB

′
t

for a unique volatility process Z ′.
More generally, V ′ and Z ′ uniquely solves a BSDE of the following form

dVt = g′(Vt, Zt, ω, t)dt+ ZtdB
′
t, (21)

with terminal condition ξ. In the special case relevant for our analysis, I have

g′(V, Z, ω, t) = −f(Ct(ω), A′t(ω), V ) + max
θ∈ΘA′

θ(ω)Z (22)

Under the action process At the value process Vt and volatility Zt solve (21) for
A and g(·).

Suppose that the condition (20) holds. Since the terminal conditions are the
same under A and A′, by the Comparison Theorem [25, Theorem 2.2]

g(V, Z, ω, t) ≤ g′(V, Z, ω, t) dt⊗ dP a.e. (23)

or equivalently the condition (20) in our model

µ(At)Zt−h(At)−max
θ∈ΘA

θ(ω)Zt ≥ µ(A′t)Zt−h(A′t)−max
θ∈ΘA′

θ(ω)Zt dt⊗dP a.e.
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implies that V ≥ V ′ for almost every t.
Suppose now that the condition (20) fails on a set of positive measures, choose

A′ that maximizes µ(A′)Zt − h(A′) − maxθ∈ΘA′ θ(ω)Z for all t ≥ 0. Then
g(V, Z, ω, t) ≤ g′(V, Z, ω, t) dt ⊗ dP a.e.. Since A′ specifies the same action as
A after t, by the Comparison theorem V ′ > V . Therefore, A is suboptimal. �

If the volatility process is written as −Zt the minimum replaces the maximum
in (23). Notice that the Proposition 5 is formulated for any generating process ΘA.
To illustrate the intuition that the presence of ambiguity introduces into contract
design I specialize the formulation to a simpler case. Taking ΘA := {(θ)t :
µ(At) + |θt| ≤ κ(At)} in the set up of Proposition 4, Proposition 5 specializes the
result to κ-ignorance model (that features symmetry around the base-line drift)
and the corresponding necessary and sufficient incentive compatibility condition
is given by

Lemma 3. For a given strategy A, let (Zt) be the volatility process from Propo-
sition 4 for κ(A)-ignorance. Then A is incentive compatible if and only if

∀a ∈ A Ztµ(At)−κ(At)|Zt|−h(At) ≥ Ztµ(at)−κ(at)|Zt|−h(at) dt⊗dP a.e.

(24)

Notice that setting κ ≡ 0 removes ambiguity and specializes the condition
to the incentive compatibility condition in the classical case formulated in San-
nikov [54] without ambiguity. Compared to this case the presence of ambiguity
introduces added additive terms in the middle of both sides of the incentive com-
patibility comparison. These additional terms have negative signs and discounts
for the worst case using the minimum drift relative to the continuation value.
Note also that for effort levels a, ã with κ(a) = κ(ã) the incentive compatibility
condition does not depend on ambiguity, and the analysis of the agent’s incentives
reduces to that in the classical case.

The simplicity of the incentive compatibility condition further allows one to
examine the effects of sensitivity of payments with output depending on how effort
relates to ambiguity. The extent of this effect is directly reflected by the strength
of the one additional term in the incentive-compatibility condition. One natural
case is to consider a technology in which higher effort leads to higher drift terms
and higher imprecision, in other words, κ(a) increases in a. Since the process
(Zt) reflects from (16) how the agent values the variation in the continuation
value, I see that higher ambiguity, reduces the value of process more drastically.
In the standard contracting problem, higher effort is incentivized through larger
variation in the continuation value that is sensitive to output realizations. This
effect is still present in the first terms as (Zt) measures the utility consequence
to the agent of this variation. However, the incentive effect of variation in the
continuation value is now tempered by the presence of ambiguity, which acts
as a cost and penalizes high variations in the continuation value. Therefore,
everything else being equal, the presence of ambiguity limits the incentive effects
of variation in the continuation value through output realizations.

To illustrate further, consider the opposite case for the uncertainty on tech-
nology so that working harder leads to higher drift term and also reduces the
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imprecision so that for a′ > a µ(a′) > µ(a) and κ(a′) < κ(a). In this case, one
can see from the incentive compatibility condition in (24) that everything else
being equal higher effort levels become easier to implement with variation in the
promised value and hence enhances the contracting possibilities for the principal.

Note also that, as in the classic contracting problem, the variation (Zt) in
continuation value is an endogenous object and depends on the contract offered.
Therefore, in the contract design the principal optimally resolves the trade-off
between high effort and high variation. Using the tractable incentive compatibil-
ity condition presented in this section, the next section formulates the optimal
contract under ambiguity and characterizes its properties.

6. The Optimal Contract

Trading off the benefit of higher effort against its effort cost and ambiguity
aversion the principal designs the optimal contract. The principal offers a con-
tract to the agent that specifies a stream of consumption (Ct) contingent on the
realized output and an incentive-compatible advice of effort (At) that maximizes
the principal’s expected profit under minmax criterion

F = min
Q∈PΘA

EQ

[
r

∫ ∞
0

e−rtdXt − r
∫ ∞

0

e−rtCtdt

]
subject to delivering the agent a required initial value of at least Ŵ

Vt(C,A) = min
Q∈PΘA

EQ

[
r

∫ ∞
0

e−rt (u(Ct)− h(At)) dt|Ft
]
≥ Ŵ

Implicit in this formulation are the termination and retirement clauses of a con-
tract. These events are explicitly characterized below within the set of consump-
tion streams. To illustrate briefly, termination is captured as follows. After a
sufficiently long period of low enough output realizations consumption a contract
is terminated and the consumption stream is set to a low level. The interest is in
contracts that generate non-negative expected profits for the principal. Derivation
of the optimal contract uses the techniques of Sannikov [54] in a continuous-time
moral hazard problem while introducing ambiguity similar to Chen and Epstein
[11].

One possible option for the principal is to retire the agent with any value
W ∈ [0, u(∞), where u(∞) = limc→∞ u(c). To retire the agent with value u(c),
the principal offers him constant consumption c and allows him to choose zero
effort. Denote the principal’s profit from retiring the agent by

F0(u(c)) = −c.

Since the agent can always guarantee himself non-negative utility by taking effort
0, the principal cannot deliver any value less than 0. The only way to deliver
value 0 is through retirement. To see this, notice that the future payments to the
agent are not always 0, the agent can guarantee himself a strictly positive value
by putting effort 0. I call F0 the principal’s retirement profit.

20



Given the agent’s consumption c(W ) and recommended effort a(W ), the evo-
lution of the agent’s continuation value Wt can be written as

dWt = r (Wt − u(c(Wt)) + h(a(Wt)) + κ(a(Wt))|Z(Wt)|) dt+ rZ(Wt)σdYt

(25)

where σdYt := (dXt − µ(a(Wt))dt) and rZ(W ) is the sensitivity of the agent’s
continuation value to output and follows from the representation given in the
previous section. When the agent takes the recommended effort, the second term
dXt − µ(a(Wt))dt has mean 0, and so drift of the agent’s expected continuation
value is given by the first term r (Wt − u(c(Wt)) + h(a(Wt)) + κ(a(Wt))|Z(Wt)|).
To account for the value that the principal owes to the agent, Wt grows at the
interest rate r and falls due to the flow of repayments r (u(c(Wt))− h(a(Wt))) and
additionally due to aversion to ambiguity this fall is reduced by κ(a(Wt))|Z(Wt)|
to account for the worst case. The latter is the main direct effect that ambiguity
aversion introduces to the design of dynamic contracts.

In a dynamic contract the allocation of payments over time determines the
drift of the agent’s expected value. The reduction in the drift due to the presence
of ambiguity makes front-loaded wages appealing because the agent prefers the
certainty of current wages over the expectation of delayed payments that are
evaluated according to the worst-case. To see this more clearly, notice that when
the agent’s current wage is small relative to the expectation of his future earnings,
that is when his wages are back-loaded, the agent’s value from the contract has an
upward-drift. Analogously, front-loaded wages move the drift of the agent’s value
downwards. Since the agent evaluates his future expectations according to his
worst-case scenario, he prefers the certainty of current wages over the uncertainty
of future payments. Therefore, ambiguity aversion induces a preference in favor
of front-loaded wages. From incentive-compatibility condition one can see that,
as usual in agency problems, to induce effort the agent’s wages over time must
be made sensitive to output realizations. However, with a preference for the
certainty of current wages, the agent’s ambiguity aversion limits the incentive
effect of intertemporal distortions in wages over time. In particular, this result
does not depend on the form of ambiguity in technology and applies generally.

The other important component of the agent’s value in a contract is its volatility
as described in the second term in (25). The contract determines the sensitivity
Z(Wt) of the agent’s value to output, which in turn affects the agent’s incentives.
If the agent deviates to a different effort level, his actual effort affects only the
drift of Xt and his incentive compatible choice is characterized by (24). Notice
from the agent’s value that the agent’s effort choice maximizes

Z(Wt)µ(a)− h(a)− |Z(Wt)|κ(a).

As in the analysis of the standard moral hazard problem, the agent’s effort de-
pends strongly on output realizations. In the equation This is seen in the first
two terms that describe the expected change tomorrow in the continuation value
in response to output net of the effort cost incurred now. Ambiguity aversion,
however, reduces the incentive effects of such back-loaded payments by discount-
ing the value according to the worst case, depending on the technology as seen
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in the last term. In particular, for technologies with κ increasing in effort, see,
for example Figure 1, the incentive effects of back-loaded payment that vary with
output realization are reduced. This is because of the fact that with such am-
biguity in technology the expected benefits becomes less sensitive to effort and
reduces the incentive effect of the variation in the continuation payments. More
formally, the marginal expected benefits of effort (µ′(a)−κ′(a))|Z(Wt)|, assuming
differentiable functions to illustrate the workings of the model, decreases with in-
creases in effort due to the agents’ aversion that reduces increments in drifts µ′(a)
by κ′(a) according to the expectations evaluated under the worst case. On the
other hand, for technologies in which uncertainty becomes smaller with increases
in effort, i.e. those with κ′(a) < 0 as in Figure 3, the expected benefits becomes
more sensitive to effort and this helps with incentives.

The optimal mix of short-run and long-run payments depends on the nature
of uncertainty and are determined by the principal. The optimal contract offered
by the ambiguity averse principal describes the choice of payments c(W ) and
effort recommendations a(W ). Let F (W ) be the highest profit that the principal
can obtain when he delivers the agent value W . Function F (W ) together with
the optimal choices of a(W ) and c(W ) satisfy the Hamiltonian-Jacobi-Bellman
(HJB) equation

rF (W ) = max
(a>0,c>0)

r[µ(a)− κ(a)− c] + F ′(W )r[W − u(c) + h(a) + κ(a)|Z(a)|]

+
F ′′(W )

2
r2σ2Z(a)2 (26)

In this formulation, the principal is maximizing the expected current flow of profit
r (µ(a)− κ(a)− c) discounted according to the worst-case drift plus the expected
change of future profit due to the drift and volatility of the agent’s continuation
value that reflects the agent’s ambiguity aversion.

The equation (26) is rewritten in the following form suitable for computation

F ′′(W ) = min
(a>0,c>0)

F (W )− a+ c+ κ(a)− F ′(W ) (W − u(c) + h(a) + κ(a)|Z(a)|)
rσ2Z2(a)/2

(27)

The optimal contract is characterized as a solution to this differential equation
by setting

F (0) = 0 (28)

and choosing the largest slope F ′(0) ≥ F ′0(0) such that the solution F satisfies

F (Wgp) = F0(Wgp) and F ′(Wgp) = F ′0(Wgp) (29)

at some point Wgp ≥ 0, where F ′(Wgp) = F ′0(Wgp) is called the smooth-pasting
condition. Let functions c : (0,Wgp) → [0,∞) and a : (0,Wgp) → A be the
minimizers in equation (27). A typical form of the value function F together
with a(W ), c(W ) and the drift of the agent’s continuation value is shown in
Figure 2. Theorem 1, which is proved formally in the Appendix, characterizes
the optimal contracts.
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Theorem 1. The unique concave function F ≥ F0 that satisfies (27), (28),
and (29) characterizes any optimal contract with positive profit to the principal.
For the agent’s starting value of W0 > Wgp, F (W0) < 0 is an upper bound on
the principal’s profit. If W0 ∈ [0,Wgp], then the optimal contract attains profit
F (W0). Such a contract is based on the agent’s continuation value as a state
variable, which starts at W0 and evolves according to

dWt = r (Wt − u(Ct) + h(At) + κ(At)|Z(At)|) dt+ rZ(Wt)σdYt (30)

where σdYt := dXt − (µ(At) − κ(At))dt under payments Ct = c(Wt) and effort
At = a(Wt), until the retirement time τ . Retirement occurs when Wτ hits 0 or
Wgp for the first time. After retirement the agent gets constant consumption of
−F0(Wτ ) and puts effort 0.

As in discrete time continuation-value Wt summarizes the past history in the
optimal contract. Replacing the continuation contract, while leaving the continu-
ation value the same, does not affect the incentives governing the choice of effort
in the current period. Therefore, to maximize the principal’s profit after any
history, the continuation contract must be optimal given Wt. It follows that the
agent’s continuation value Wt completely determines the continuation contract.
This logic does not necessarily follow when there are additional state variables,
for example, when hidden savings by the agent are allowed. I abstract from the
latter to focus on the implication of ambiguous information.

Turning to the discussion of optimal effort and consumption using (26) notice
that the optimal effort maximizes

r(µ(a)− κ(a)) + r (h(a) + κ(a)|Z(a)|)F ′2(W )σ2Z(a)2F
′′(W )

2
(31)

where r(µ(a) − κ(a)) is the expected flow of output according to the worst-case
scenario, rF ′(W )(h(a) +κ(a)|Z(a)|) is the cost of compensating the agent for his

effort, and r2σ2 γ(a)2

2
F ′′(W ) is the cost of exposing the agent to income uncertainty

to provide incentives. The presence of ambiguity introduces a worst-case scenario
κ(a) and changes the sensitivity of the continuation value Z(a) relative to the
case without ambiguity. These two costs typically work in opposite directions,
creating a complex effort profile (see Figure 2). While F ′(W ) decreases in W
because F is concave, F ′′(W ) increase over some ranges of W . It turns out that
in the optimal contract the introduction of ambiguity in the contracting problem
reduces the sensitivity of the optimal incentive scheme to output realizations.

The optimal choice of consumption maximizes

−c− F ′(W )u(c)

Thus the agent’s consumption is 0 when F ′(W ) ≥ −1/u′(0) in the probation-
ary interval [0,W ∗∗], and it is increasing in W according to F ′(W ) = −1/u′(c)
above W ∗∗. Intuitively, 1/u′(c) and −F ′(W ) are the marginal costs of giving the
agent value through current consumption and through his continuation payoff,
respectively. Those marginal costs must be equal under the optimal contract,
except in the probationary interval. There, consumption zero is optimal because
it maximizes the drift of Wt away from the inefficient low retirement point.
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The HJB formulation describes the solution to the optimal contract in a com-
pact form. The analytical solution to the equation is not in general available.
We therefore numerically solve it in various parametric examples to illustrate the
effects of ambiguity on the optimal contract. To provide a clear comparison, I
take the classical example and add the set of drift terms. As in the classical case,
in our examples I set u(c) =

√
c, h(a) = 1

2
a2 + 0.4a, r = 0.1, and σ = 1. Our

analytical framework does not restrict how effort influences the set of drift terms.
In our example, I focus on the sets of drift terms of the form [a− κ(a), a+ κ(a)].
The set is symmetric, centered at µ(a) = a corresponding to the drift term in the
classical case without ambiguity, and has a width κ(a).

To ease the illustration, I consider two natural cases for uncertainty about the
technology. In the first case, higher effort increases the strength of ambiguity.
In particular, to ease the illustration, in the numerical example I set κ(a) = 1

4
a,

while the qualitative features of the optimal contract do not sensitively depend on
this particular choice of the function. Figure 1 graphically illustrates the nature
of this experiment.

Figure 1. Technology with ambiguity - case of increasing κ

In this experiment, increasing effort increases the set of drift terms but ambi-
guity, as measured by the size of the intervals, also increases. The lower bound of
the set corresponds the lowest drift, which, as I have shown, represents the worst-
case scenario. Given this structure for the uncertainty governing technology, I
continue analyzing the properties of the optimal contract. The main character-
istics of the contract regarding profits, efforts and consumption schedule as a
function of the continuation value is illustrated below in Figure 2.
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Figure 2. The Optimal Contract with increasing κ

Notice that in the optimal contract under ambiguity the principal makes lower
expected profits, and offers a flatter incentive scheme and less back-loaded com-
pensations for the agent as ambiguity increases with effort, i.e, κ(a) increases in
effort. To examine closely the rationale for these results that the current model
offers I turn to analyze the implication of the optimal contract for the compen-
sation scheme over the career path of the agent.

Lemma 4. The consumption stream to the agent under ambiguity cκ is less back-
loaded relative to the optimal consumption stream c without ambiguity. Moreover,
the ratios of volatilities of the agent’s consumption and continuation value is
greater in the optimal contract under ambiguity. Therefore, the contract associ-
ated with ambiguity relies less on short-term incentives.

Formally, this conclusion mainly follows from noticing that the introduction
of ambiguity modifies HJB in a tractable way and applying in my framework a
general result from Sannikov that systematically compares the optimal contract
under various HJBs. The following fills in the required details.

Proof. Notice that with ambiguity in the optimal contract the profit function to
the principal F κ is lower than that without ambiguity F . From Theorem 4(a) in
Sannikov [54] that holds in general HJB, the contract associated with the ambigu-
ous environment involves less back-loaded payments cκ(w) ≥ c(w). Analogous
arguments from Sannikov’s Theorem 4(b) establishes the stated relationship on
the volatilities of consumption and the continuation value. �
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Turning to the interpretation of the result in Lemma 4 notice that similar as in
the classical case, from the incentive compatibility condition (24) we see that the
variation in the continuation value with output realizations is still present. The
usual intuition is still applicable here that to solve agency conflict the principal’s
design of contract aligns interests by letting agent’s compensation to positively
vary with his profits. One can also see from the Lemma that the presence of
ambiguity makes back-loaded incentives less effective relative to the classical case.
Intuitively, the ambiguity averse agent prefers certainty of payments today over
uncertainty of future transfers. Moreover, the sensitivity in the continuation value
is not too effective to incentivize the agent due to his pessimism captured by the
worst-case criterion. In the optimal contract, the principal offers a contract that
has certainty and steadyness to induce efforts. This is not immediate to interpret
in a standard agency problem as it would have adverse incentive effects. In the
current model, the principal has an additional tools that decide termination of
the contract depending on the agent’s continuation value which reflect the history
of his performance.

In the optimal contract, faced with unknown technology and unobservable ef-
fort the principal chooses a higher continuation value for the termination and
lower value for the retirement relative to one without ambiguity, as I see in Fig-
ure 2. The weaker guarantee in the contractual relationship in this form helps to
incentivize the agent. To interpret this result start noticing that in the optimal
contract low continuation values lead to termination of the contract, and higher
values result in the retirement of the agent. Intuition is similar as in the classic
case that termination incentivizes agent to work hard while high continuation
value makes it costly to the principal to induce high effort from the agent due
to the income effect. To the literature on the agency, the new explanation this
work offers is that the durability of the contracting relation can be seen as a
part of incentive scheme. One consequence of lower volatility of the continua-
tion value in Lemma 4 is that the duration of the relationship is longer under
ambiguity. The agent receives his preferred compensation scheme that features
certainty and steadyness in his wage stream in return for his continued steady
effort. Since such a flat scheme leads to steady profits, ambiguity averse principal
finds it optimal to implement. The lowers profits results from the discount in
the principal’s expectations that his pessimism according to the worst case of
technology. A flatter compensation scheme means that the wage profile of the
worker does not change sensitively with the output realizations and therefore my
model with higher ambiguity predicts simpler contract.

One possible behavioral interpretation of the result is that an ambiguity averse
principal is tolerant. Despite possible low output realizations he continues with
the contractual relationship attributing them to the bad luck due to the worst-
case of uncertain technology rather than to the lack of due diligence by the
worker. The optimality of such delay also means longer contractual relations
for the agent to receive steady flow of payments. This helps with incentives to
provide higher effort levels when the continuation value is low as shown in Figure
2. On the other hand, for higher values of continuation value, since the back-
loaded payments as I have observed in the analysis of the incentive compatibility
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condition under ambiguity losses its incentive effects due to the familiar income
effect, the effort levels are lower relative to the schedule without ambiguity. The
combination of two properties leads to wage structure that has a narrow range
and, therefore, generates a flat compensation scheme. The result on tolerance has
an empirical corroboration. It is consistent with the empirical evidence from the
venture capital contracts that find more successful innovative firms have higher
tolerance for early failures as documented in Tian and Wang [61].

Next I turn to characterize optimal contract under technology in which am-
biguity decreases with effort. Figure 3 below graphically illustrates the nature
of this experiment. The parameter values except that on ambiguity is fixed as
above. In the second experiment, I consider a technology in which higher effort
increases the strength of ambiguity. In particular, to ease the illustration, in the
numerical example I set κ(a) = −1

4
a, while the qualitative features of the opti-

mal contract do not sensitively depend on this particular choice of the function.
Figure 3 graphically illustrates the nature of this experiment.

Figure 3. Technology with ambiguity - case of decreasing κ

In this experiment, increasing effort increases, similar as before, the set of drift
terms but ambiguity, as measured by the size of the intervals, also decreases.
Given this structure for the uncertainty governing technology, I continue ana-
lyzing the properties of the optimal contract. The main characteristics of the
contract regarding profits, efforts and consumption schedule as a function of the
continuation value is illustrated below in Figure 4.
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Figure 4. The Optimal Contract with decreasing κ

The qualitative features of the optimal contract in this case is very similar to
that with increasing ambiguity. In particular, in the optimal contract under am-
biguity the principal earns lower expected profits, and offers a flatter incentive
scheme and less back-loaded compensations for the agent as ambiguity decreases
with effort, i.e, κ(a) decreases in effort. The main difference in this case is that,
increasing effort reduces uncertainty and this helps with incentives as can analyt-
ically be seen from the incentive compatibility constraint (24) and from Figure
4.

7. Discussion

This work has presented a dynamic principal-agent model with ambiguity about
the technology. The model has depicted the simplicity and durability of the con-
tracts in that environment. When parties have common ambiguous understanding
of the technology, pessimism over the expectation of uncertain future outcomes
according to the worst case makes the certainty of immediate values in the rela-
tionship relatively more attractive. The unique optimal way for this preference
for certainty to be beneficial to the parties with conflicting interests is to tie them
in a durable contract with little sensitivity to outcomes.

As noticed in the introduction, many scholars have observed that relative to the
simplicity of real world contracts, the theoretical predictions of the agency models
are contracts that feature sensitivity to the details of the environment and contin-
gencies in the contractual relationship. Holmstrom and Milgrom [40] offered an
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early model to illustrate the simplicity of linear contracts. Their model is in con-
tinuous time, similar to the one here. Unlike the model here, the agent controls
the drift of a diffusion process in a precisely known way, and both the principal
and the agent has CARA preferences. The key benefit of these assumptions is
that the optimal incentives is independent of the history in the relationship and
this leads to simple linear contracts. These assumptions are probably strong in
seeking robustness to the details of the economics environment. The framework
here allows for general preferences and general structure for uncertainty about
the technology. Despite there is in principle dependence of the optimal incentives
looking forward on the history of realizations, the optimal contract features little
sensitivity to the history.

The part of the intuition in this paper is particularly close to the argument
made by Carroll [10] that generalizes Diamond [20]’s intuition for the unique
optimality of linear contracts. He considers a static model in which the agent
is free to choose an action from his feasible set and the principal has partial
information about this set. The agent knows his feasible set of actions, while
the principal has full ambiguity about this set and knows only the worst-case
associated with each of his contract offering. In this environment Carroll shows
that linearity is the unique way for the principal to turn this information into a
guarantee for himself. In my model, although both the principal and the agent has
symmetric ambiguous information about technology, the knowledge of worst-case
still ties the principal’s expected profits to the agent’s expected compensation and
provides him a guarantee. In the dynamic contracting problem here, dependence
of compensations on the output is in general non-linear reflecting the history
dependence in the contracting relationship. When the dynamic contract is viewed
as a sequence of static contracts tied over time with the continuation values, one
can see that at each instant the contract is linear in utilities. This mainly follows
from an analogous argument made by Carroll and the fact, as I have shown,
that the parties agree on the worst case. Moreover, the dynamic model features
simplicity as a path property. Although the optimal contract is history dependent
and can vary sensitively with past outputs, ambiguity about technology and the
parties’ aversion to it as captured in the worst-case criterion leads to incentive
schemes that have little variation over time.

This paper is also related to the literature on the design of robust contracts with
moral hazard problem in continuous time. Miao and Rivera [48] consider a dy-
namic agency problem in which the principal has ambiguity about the technology,
while the agent has precise knowledge of it; and they also consider an alternative
specification in which parties have common precise knowledge of technology but
the principal has ambiguity about the agent’s beliefs. Their focus is different and
on the analysis of capital structure a firm and asset pricing. In a similar model
Szydlowski [59] introduces the principal’s ambiguity about the agent’s effort cost
rather than about technology and shows that his model implies highly sensitive
compensation scheme as a path property due to the worst case regarding effort
costs. Both of these papers have strong assumptions regarding ambiguity averse
preferences and that the agent has a binary choice for an action. The present work
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considers a general structure for ambiguous information and allows for general
ambiguity averse preferences.

For reasons of simplicity, in modeling aversion to ambiguity I adopt the max-
imin criterion in the recursive formulation. In particular, in my model of pref-
erence representation I assumed a standard aggregator for the function f that
represent how in total current and future utilities are valued. For the main ap-
plication considered here with IID ambiguity, my modeling choice is motivated
by the results on the general nature of preferences, as shown by Strzalecki [58],
that the standard aggregator together with maxmin expectation operator is the
only form among a large family of dynamic ambiguity preferences that has the
property of the indifference to the timing of the resolution of uncertainty. The
model here is flexible enough to incorporate, for example, a class of recursive
smooth ambiguity preferences recently developed in Hayashi and Miao [36], and
Klibanoff, Marinacci and Mukerji [44]. Similarly, the model is general enough
to incorporate general specifications for ambiguous information, including those
that feature various aspects of learning. To illustrate applications of the frame-
work, in the present work I use here specification of κ− model of ambiguity with
its dependency on effort, which allows for both the constraint on the set of priors
and the incentive-compatibility constraint to be analyzed separately. A working
in progress attempt to analyze the presence of differential information about the
technology, building on the decision theoretic work on the updating of ambiguous
information in discrete time by Epstein and Schneider [27] and its generalization
in Ju and Miao [41], and in continuous-time Leippold, Trojani, and Vanini [46].

8. Concluding remarks

Contracting parties interact with imprecise information about the environment
they interact in. In this paper, I focused one a particular form of information
imprecision: both contracting parties have common ambiguity about the pro-
ductive technology. This assumption has allowed us to: (1) apply and extend
the decision-theoretic model of Chen and Epstein [11] to continuous-time setting
relevant for the dynamic contracting problem; and (2) tractably generalize the
principal-agent problem proposed by Sannikov [54] to incorporate richer uncer-
tainty. Pursuing the latter we have found that our model of ambiguity illustrates
a new trade-off between effort and variation of compensation and that the optimal
resolution of the trade-off favors simple contract structures.

For tractability I have abstracted our analysis from differential information
between the contracting parties on the technology. It is left to future research
to extend our model to incorporate the richer nature of ambiguous information
that, for instance, could allow for learning and experimenting in the design of
contracts.

9. Appendix for the proofs

To establish the unique optimal contract I follow the analogous steps as in
Sannikov [54]. Using the HJB I formulate a conjecture for an optimal contract.
We show that the HJB satisfies appropriate regularity properties and that it has
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a unique solution. From that solution I form a conjecture for an optimal contract
and then verify its optimality.

For regularity I consider a version of HJB

F ′′(W ) = min
(a,Z)∈Γ,c∈[0,C])

F (W )− a+ c+ κ(a)− F ′(W )(W − u(c) + h(a) + κ(a)|Z(a)|)
rσ2Z2(a)/2

(32)

where the sensitivity parameter Z is bounded from below by γ0, and consumption
is bounded from above by the level C such that u′(C) = γ0. The existence
and uniqueness of solutions to the HJB equation (27) satisfying the boundary
conditions (29) follows from analogous arguments made by Sannikov [54] since
the right-hand side of (27) is Lipschitz continuous in all of its arguments.

9.1. Conjecture of a contract. We conjecture an optimal contract from the
solution of equation HJB just constructed.

Proposition 6. Consider the unique solution F (W ) ≥ F0(W ) that satisfies
boundary conditions (29) for some Wgp ∈ [0,W ∗

gp]. Let a : [0,W ∗
gp] → A,

Y : [0,W ∗
gp]→ [γ0, γ1] and c : [0,W ∗

gp]→ [0, C] be the minimizers in (27). For any
starting condition W0 ∈ [0,Wgp] there is a unique solution, in the sense of weak
probability law, to the following equation

dWt = r(Wt − u(c(Wt)) + h(a(Wt)) + κ(a(Wt))|Z(Wt)|)dt
+ rZ(Wt)(dXt − [a(Wt)− κ(a(Wt))] dt)

where the last term is a Brownian Motion: σdB
a(W )
t = dXt−a(Wt)Z(Wt)dt until

the time τ . The contract (C,A) defined by

Ct = c(Wt), and At = a(Wt), for t ∈ [0, τ ])

Ct = −F0(Wτ ), and At = 0, for t ≥ τ

is incentive-compatible, and it has a value W0 to the agent and profit F (W0) to
the principal.

Proof. From the representation of Wt(C,A) in Proposition 4, I have

d(Wt(C,A)−Wt) = r(Wt(C,A)−Wt)dt+ r(Yt − Y (Wt))σdB
A
t

+ rκ(A)(|Zt| − |Z(Wt)|)dt
where the changes of measures are conducted under the worst-case measures.
This implies that

Et[Wt+s(C,A)−Wt+s] = ers(Wt(C,A)−Wt) + ersEtκ(A)(|Zt| − |Z(Wt)|)
Notice that the left hand side must remain bounded, because both W and
W (A,C) (since Ct is bounded) are bounded, and the processes Zt and Z(Wt)
are bounded by the representation theorem. It follows that Wt = Wt(C,A) for
all t ≥ 0, and in particular, the agent gets value W0 = W0(C,A) from the entire
contract. Also, the contract (C,A) is incentive compatible, since (At, Zt) ∈ Γ for
all t.
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To see that the principal gets profit F (W0), consider

Gt = r

∫ t

0

e−rs(As − κ(As)− Cs)ds+ e−rtF (Wt).

By Ito’s lemma, the drift of Gt is

re−rt ((At − κ(At)− Ct − F (Wt)) + F ′(Wt)(Wt − u(Ct) + h(At) + κ(At)|Zt|)
+ rσ2Z2

t F
′′(Wt)/2

)
.

The value of this expression is 0 before time τ by the HJB equation. Therefore, Gt

is a bounded martingale until τ and the principal’s profit from the entire contract
is

min
QA∈PA

EQA
[
r

∫ τ

0

e−rs(As − Cs)ds+ e−rτF0(Wτ )

]

= E

[
e

∫ τ

0

e−rs(As − κ(As)− Cs)ds+ e−rτF0(Wτ )

]
= E[Gτ ] = G0 = F (W0),

since F (Wτ ) = F0(Wτ ). �

9.2. Verification. Our last step is to verify that the contract presented in Propo-
sition 6 is optimal. We start with a lemma that bounds from above the principal’s
profit from contracts that give the agent a value higher than W ∗

gp.

Lemma 5. The profit from any contract (C,A) with the agent’s value W0 ≥ W ∗
gp

is at most F0(W0)

Proof. Define c by u(c) = W0. Then W0 ≥ W ∗
gp implies that u′(c) ≤ γ0. I have

For any Q I have

EQ

[
r

∫ ∞
0

e−rt(u(Ct)− h(At))

]
≤ EQ

[
r

∫ ∞
0

e−rt(u(c) + (Ct − c)u′(c)− γ0At)dt

]
≤ u(c)− u′(c)

(
EQ

[
r

∫ ∞
0

e−rt(At − Ct)dt
]

+ c

)
,

In particular,

W0 = min
Q
EQ

[
r

∫ ∞
0

e−rt(u(Ct)− h(At))

]
≤ u(c)− u′(c)

(
E

[
r

∫ ∞
0

e−rt(At − κ(At)− Ct)dt
]

+ c

)
where u(c) = W0 and c = −F0(W ). It follows that the profit from this contract
is at most F0(W ). �

Next, note that function F from which the contract is constructed satisfies

min
W ′∈[0,∞)

F (W )− F0(W ′)− F ′(W )(W −W ′)

= min
c∈[0,∞)

F (W ) + c− F ′(W )(W + u(c)) ≥ 0 (33)
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for all W ≥ 0. For any such solution, the optimizers in the HJB equation satisfy
a(W ) > 0 and c(W ) < C. If either of these conditions failed, (33) would imply
that F ′′(W ) ≥ 0. Also I have that Z(W ) = γ(a(W )).

Proposition 7. Consider a concave solution F to the HJB equation that sat-
isfies (33). Any incentive-compatible contract (C,A) achieves profit of at most
F (W0(C,A)).

Proof. Denote the agent’s continuation value by Wt = Wt(C,A), which is rep-
resented by (16) using the process Zt. By the Lemma, the profit is at most
F0(W0) ≤ F (W0) if W0 ≥ W ∗

gp. If W0 ∈ [0,W ∗
gp], define

Gt = r

∫ t

0

re−rs(As − κ(At)− Cs)ds+ e−rtF (Wt)

as in Proposition 3. By Ito’s lemma, the drift of Gt is

re−rt ((At − κ(At)− Ct − F (Wt)) + F ′(Wt)(Wt − u(Ct) + h(At) + κ(At)|Zt|)
+ rσ2Z2

t F
′′(Wt)/2

)
which is computed under the worst-case scenario.

Let us show that the drift of Gt is always non-positive. If At > 0 then Propo-
sition 2 and the definition of γ imply that Yt ≥ γ(At). Then equation HJB and
together with F ′′(Wt) ≤ 0 imply that the drift if G is non-positive. If At = 0,
then F ′′(W ) < 0 and (33) imply that the drift of Gt is non-positive.

It follows that Gt is a bounded supermartingale until the stopping time τ ′

(possibly ∞) when Wt reaches W ∗
gp. At time τ ′ the principal’s future profit is

less than or equal to F0(W ∗
gp) ≤ F (W ∗

gp) by Lemma 4. Therefore, the principal’s
expected profit at time 0 is less than or equal to

EA

[∫ τ ′

0

e−rt(dXt − Ctdt) + e−rτ
′
F (Wτ ′)

]
= EA[Gτ ′ ] ≤ G0 = F (W0).

�

9.3. On the set of multiple priors.

Proof. of Proposition 2
(b) The process dWA = µ(At)dt+ σdBt is a Brownian motion under the base-

line measure QA = ZAP .
Fix B ∈ Ft and Qθ

A ∈ PΘ
A . By Girsanov’s Theorem, Qθ

A(B|Ft) = yt, where
(yt, σt) is the unique solution to

dyt = σt (µ(At)dBt) , yT = 1B

By the bounding inequality in El Karoui, Peng, and Quenez [25] and Uniform
Boundedness, there exits k > 0 such that

(Qθ
A(B))2 ≤ kEQA(1B) = kQA(B),

where k is independent of θ. This delivers uniform absolute continuity. Equiva-
lence obtains because Zθ

T > 0 for each θ.
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(c) Follows from replacing P with Qθ=0
A in the proof by CE. For i = 1, 2, let

Qi be the measure corresponding to θi ∈ ΘA and the martingale Zθi
A as in (6).

Define θ = (θt) by

θt =
(θ1
t + θ2

t )

z1
t + z2

t

It thus follows that θ ∈ ΘA and d (z1
t + z2

t ) = − (z1
t + z2

t ) θt · dWA
t , which implies

that (z1
T + z2

T ) /2 is the density for (Q1 +Q2) /2. This shows that the latter
measure lies in PΘ

A .
(d) By the analogous arguments in Cuoco and Cvitanic [14], using the weak

compactness of ΘA by Lemma 3, ZΘ =
{
zθT : θ ∈ ΘA

}
is norm closed in L1(Ω,FT , P ).

Moreover, because Z is convex, it is also weakly closed. Since EA
(
|zθT |
)

= 1 for
all θ, Z is norm-bounded. Therefore, by the Alaoglu Theorem, Z is weakly com-
pact. Finally, ZΘ is homeomorphic to PΘ when weak topologies are used in both
cases.

(e) follows from the properties of Θ established in Lemma 4. �
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