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Abstract

We develop a model of bilateral assignment under capacity constraints,
under the relevant version of the celebrated Consistency axiom: every
submatrix of an optimal assignment matrix must be optimal as well.

When the unconstrained proportional assignment is the ideal assign-
ment, the only consistent approximation under our constraints minimizes
the entropy of the assignment matrix; exactly like the Mutual Information
index of segregation ([9]).

More general consistent assignment rules minimize a common additive
welfare function over the entries of the matrix.

Acknowledgments: cricital comments by Francois Maniquet, Peyton
Young, and seminar participants in U of Glasgow, Oxford, and U of Vi-
enna have been very helpful.

1 Introduction and the punchlines

1.1 Optimal desegregation

Reducing segregation is an important policy issue that requires a measurement
tool. The typical instance involves a school district with students of various
backgrounds (ethinicity, gender, academic status, etc..) and several schools.1

The assignment of students to schools involve no segregation if the relative dis-
tribution of student types is the same in every school of the district. This ideal
situation is unlikely, so the practical question is to decide whether segregation
increases or decreases when the assignment changes. Inspired by the theory of
inequality indices, a large literature proposes a great variety of segregation in-
dices ([11] and [9] are two good surveys.) providing different systematic answers
to this question. Such an index is null only for the proportional assignment,
and increases to 1, or sometimes ∞, for maximally segregated assignments (for
instance, a single ethnic group per school).
Rather than focusing on the ordering of assignment matrices, we consider

the choice of one assignment under exogenous constraints, specifically lower

1School segregation is but one paramount example; others include the gender distribution
in jobs of hierarchically ranked status, of education or health level relative to ethnicity of
income class , and so on.
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and upper bounds on the number of students of a certain type enrolled at a
certain school. If the segregation-minded public authority can freely assign the
ethnic groups in the district to its schools, it will do so proportionally; what
assignment is optimal if some capacity constraints rule out the ideal proportional
assignment? We allow arbitrary lower and upper bounds on each entry of the
assignment matrix: for instance a school has to re-enroll a certain amount of
students of each group; and geographic constraints prevent it from enrolling
more than a certain amount of students in certain groups.
When we fix the school capacities and the sizes of the different groups of

students, most existing segregation indices proposed in the literature are a con-
vex function of the feasible assignment matrices, with a unique minimum at
the proportional assignment. This includes the Dissimilarity and Gini indices,
as well as the family of Akinson’s indices. Therefore each such index answers
the question above by choosing the assignment minimizing under constraints its
own measure of segregation. The only restriction is that the constraints define
a convex set of feasible assignments, which is certainly the case for the capacity
constraints we discuss here.
We single out a particular measure of segregation known as the Mutual

Information index, introduced by Theil [16] and axiomatized by Frankel and
Volij [9], with the help of two axioms. We stress that these axioms convey no
intuition of what it means for an assignment to be more or less segregated. They
are in fact familiar choice-theoretic statements.
The first requirement is that the exogenous capacity constraints should not

have any normative meaning, which leads to the property we call constraint
neutrality. If the assignment optimal under certain constraints satisfies tighter
constraints, itshould still be optimal under the latter constraints; moreover we
can ignore a non binding constraint. Note that minimizing a strictly convex
index as two paragraphs above, is a constraint-neutral assignment rule.
Our second axiom is novel in the context of the segregation problem, but

very familiar in the literature on fair allocation, where it has played a central
role for the last three decades (see [21], [18], [19]). In the bilateral assignment
problem the celebrated Consistency principle means that if we fix the capacity
constraints, and an assignment matrix is “optimal” given those constraints,
then any submatrix is an optimal assignment for the corresponding subproblem.
As usual, Consistency by itself conveys no judgment of fairness, it is only a
decentralization property: every part of an optimal division should be optimal.2

Theorem 1 states that the combination of Constraint Neutrality and Consis-
tency, together with standard Symmetry and Continuity conditions, captures a
single assignment rule. It maximizes under the capacity constraints the total en-
tropy of the assignment matrix. This is precisely what the Mutual Information
segregation index recommends. In addition, the optimal assignment takes a sim-
ple multiplicative form similar to that of the unconstrained case, and described
in the next subsection.

2 In the words of Balinski and Young [3]: “every part of a fair division should be fair”; yet
fairness is not relevant here; CSY applies to any choice method, however unfairly it treats the
participants, and it is satisfied by some very unfair rules.
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1.2 Capacited proportional assignment

The two rationality axioms driving the result, Constraint Neutrality and Consis-
tency, are not related to any notion of fairness. Our only normative requirement
(about segregation) is the uncontroversial postulate that full proportionality is
optimal when feasible. Therefore our Theorem 1 can be applied in many other
contexts where proportionality is a compelling ideal. For instance a chain store
assigns consumer goods of different "quality" to different stores in the chain,
and fairness demands that every store gets the same proportion of high, medium
and low quality goods. Similarly for the distribution of jobs between workers, of
itemized funds (for infrastructure, for health, etc) by a public authority, between
different communities; and so on. Exogenous capacity constraints are natural
in those new contexts as well: some stores may have a limited storage capacty
for certain goods; some communities may limit spending on some items, they
may have incompressible needs for other items; and so on.
We propose a simple way to adapt the proportional ideal in the presence of

exogenous capacity constraints. To fix ideas we speak of a set of agents , labeled
i, i ∈ N , and a set of resources a, a ∈ A (both finite). In the school example,
each agent i is a different type of students (e.g. an ethnic group), and each
resource a is a different school. Also given are the total capacity xi of agent i
(the number of type i students) and ra of resource a (the number of students
at school a). In the funding example i is a community and xi its total budget,
while ra is the total amount to spend on item a.
We assume budget-balance,

∑
N xi =

∑
A ra = b, and must choose a non

negative assignment [yia] of the resources to the agents: that is, we require∑
A yia = xi for all i, and

∑
N yia = ra for all a. The proportional assignment

yia = xi·ra
b achieves the ideal of equal relative representation of each resource

in the basket of each agent. We wish to adapt it consistently in the presence
of exogenous capacity constraints q−ia ≤ yia ≤ q+

ia for each i, a. There is a
unique way to do so, which picks the flow minimizing the entropy function∑

(i,a)∈N×A yia · ln(yia) over all feasible flows. Proposition 1 gives a parametric
representation of this assignment: it is the only one that can be written, for
some positive numbers λi, µa, as

yia = med{(λi · µa), q−ia, q
+
ia} for all i, a (1)

(where med is the median operator).This mimicks the multiplicative form char-
acteristic of the unconstrained proportional flow, adjusted by projection on the
capacity constraints. We speak of the capacited proportional assignment.

1.3 Consistent bilateral assignment

The bilateral assignment problem addresses the more general question of divid-
ing the resources a ∈ A, between the agents i ∈ N , given the capacities xi, ra,
and budget balanced as above, without postulating that proportionality is ideal.
For instance if the entry yia is the load of a truck from the warehouse a to the
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retailer i, and we want to equalize the loads across all trucks, we will maximize
the leximin ordering over all feasible assignments.
We ask two questions.
We consider first unconstrained assignment problems (N,A, x, r), where we

can choose any flow y = (yia) ∈ RN×A+ such that
∑
A yia = xi for all i, and∑

N yia = ra for all a. Which choice rules respect the Consistency principle
(any submatrix of an optimal assgnment matrix is optimal too), together with
the standard Symmetry and Continuity conditions? Our Theorem 2 provides
the answer under an additional monotonicity restriction on the choice rule.
Srict Resource Monotonicity says that a transfer from resource a to resource b,
ceteris paribus, increases yia and decreases yib for all i. Theorem 2 shows that a
consistent and strictly resource monotonic assignment rule must be “welfarist”:
it selects the assignment minimizing a separably additive function

∑
W (yia)

where W is a smooth and strictly convex function such that W ′(0) = −∞.
We speak of consistent welfarist assignment rules. This result is a relative of
Young’s Theorem [20] on rationing rules3 , where Consistency, Symmetry and
Continuity force the minimization of a convex objective function, separably
additive in individual shares. Our proof uses critically Young’s result.
Then we ask how we can adapt consistently such a welfarist rule in the

presence of exogenous capacity constraints? Our answer generalizes Theorem
1: we show that the only way is to minimize the same welfarist objective under
the additional constraints (Proposition 3), and give a parametric representation
of the corresponding assignment similar to (1) (Proposition 2).

Contents Section 2 reviews the literature. Section 3 introduces the model
and basic definitions. Section 4 discusses the capacited proportional assignment
and the corresponding choice rule (Theorem 1). Section 5 is devoted to the
more general capacited welfarist assignments (and rules). Section 6 states their
partial characterization as consistent asignment rules (Theorem 2). Section 7
gathers some concluding comments and open questions, and section 8 contains
the proof of Theorem 2.

2 Related literature

2.0.1 On the Mutual Information index

In addition to providing a very useful survey of the main indices in the liter-
ature, Frankel and Volij [9] characterize the Mutual Information index as an
ordering of assignment matrices (their Theorem 2). Thus their axioms imply
that on any convex subset of feasible assignments, one should simply minimize
this index, whereas our Theorem 1 implies the same conclusion only for “rec-
tangular”subsets (defined by a lower and an upper bound on each entry). On
the other hand our characterization is much leaner than theirs.

3A rationing problem, in our notations, is a bilateral assignment problem with a single
resource a, and budget deficit: ra ≤

∑
N xi.
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Both results share Symmetry and Continuity requirements. Frankel and
Volij assume that we select an assignment minimizing some ordering, whereas
our Constraint Neutrality requirement is implied by, but does not imply, the
existence of such an ordering. Our central Consistency axiom is similar in
spirit and in bite to their Independence axiom, requiring that if two assignment
matrices differ only in a submatrix, what happens in the submatrix is all we
need to order the two matrices. Though CSY and Independence are not logically
related, Independence is the classic tool to derive a separably additive utility
representation of the ordering, just like CSY in our model(Theorem 2) and in
rationing problems forces the minimization of such a utility.
Frankel and Volij need three more substantial requirements to capture the

Mutual Information index. One is the familiar Scale Invariance. Next when we
split a school (resp. a group of students) in two smaller schools with identical
representations of the student groups (resp. in two subgroups equally distributed
across schools), the index does not change. And finally the above splitting
operations can only increase segregation (when the two new distributions differ).
The latter imediately implies that the proportional assignment is on top of the
ordering.

2.0.2 On Fair Representation

Apportioning seats in a parliament to voting districts in proportion to their
population raises an interesting rounding problem because seats are indivisible.
Balinski and Young’s in their classic book [3] argue for a particular rounding
method on the basis of the Consistency axiom itself.
In order to allocate seats to political parties and townships, Balinski and

Demange [2] generalize the apportionment problem in two dimensions: given an
exogenous assignment matrix [zia] (not necessarily proportional), and capacity
constraints on the sums of rows and of columns (but not on the entries of the
matrix), they look for a feasible assignment [yia] “as proportional as possible”
to the initial matrix z. They allow for real valued assignments,and rely on
Consistency (Uniformity in their terminology) as well as Scale Invariance, and
Monotonicity (of z → y), to derive a solution minimizing a weighted entropy,
much like our capacited proportional assignment. Their parametric representa-
tion of the solution is a relative of our Proposition 1. See comment 2 in section
7.

2.0.3 On Rationing methods

In the standard rationing problem, we must divide r units of a single commodity
a, given individual claims xi such that

∑
i xi > r, so that we have excess

demand. Combining Consistency, Symmetry and Continuity, Young’s Theorem
([20]) characterizes the rules minimizing a separably additive welfare function∑
iW (xi, yi) where W is strictly convex in yi. Our welfarist rules minimize a

similar but simpler sum
∑
i,aW (yia), because the domain ofW is of dimension 1.

Indeed our Consistency axiom has more bite because it works in both dimensions
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of the matrix. We stress that Young’s Theorem is a key ingredient in the proof
of both Theorems 1 and 2.
Moulin and Sethuraman ([14], [15]), two direct inspirations for the current

work, consider a bilateral rationing problem with individual claims xi and a
supply ra of the “type a” resources. Capacity constraints are binary: either
agent i can eat any amount of resource a, or he cannot eat any a at all. Theo-
rem 1 in [14] characterizes the “bipartite proportional rationing”method, that
coincides with the Capacited Proportional assignment here when the budget is
balanced (so there is no need to ration the claims). Our Theorem 1 is easily
adapted to a generalization of that result for rationing problems with general
capacity constraints. See Remark 1 at the end of section 4, and comment 3 in
section 7.
We note that bilateral rationing with binary capacity constraints was intro-

duced in [5], [6], where agents are endowed with single-peaked preferences over
their share and must report them truthfully. See also [8]
Finally [4], and [10] discuss rationing methods under lower and upper capac-

ity constraints on individual shares similar to ours. They give normative content
to these constraints, thus contradicting our Constraint Neutrality requirement.

2.0.4 On Probabilistic Assignment

In the special case where xi = ra = 1 (and |N | = |A|) our matrix [yia] is doubly
stochastic, hence it can be interpreted as a probabilistic assignment of rows to
columns. But the capacity constraints on entries are hard to motivate, and
Consistency as we define it does not apply because it requires arbitrary sums
in rows and columns. In the unconstrained version of that model, Chambers [7]
uses a stronger version of Consistency to capture the uniform assignment.

3 Model and basic definitions

To fix ideas, and to stress the connection with the rationing model that plays an
important role in the proofs, we speak of the sets N of agents and A of resources,
rather than sources and sinks. They are both finite and of cardinality at least
three, and their generic elements are i and a respectively. We use repeatedly
the notation zV =

∑
v∈V zv.

3.1 Assignment problems

An assignment problem P = (N,A, x, r,Q) specifies

• the total allocation (capacity) xi of each agent, so x ∈ RN+
• the endowment ra of the resource of type a, so r ∈ RA+
• for each pair (i, a) ∈ N × A, a closed capacity interval Qia = [q−ia, q

+
ia] ⊆

R+
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meeting the budget balance equation xN = rA = b.
If Qia = R+ for all (i, a) ∈ N × A, we speak of an unconstrained problem,

and we write simply P = (N,A, x, r).
We write Q = ΠN×AQia ⊆ RN×A+ for the profile of capacity constraints.

A feasible assignment is a matrix y ∈ Q such that y{i}×A = xi for all i ∈ N ,
and yN×{a} = ra for all a ∈ A. Such an assignment always exists if P is
unconstrained, but in general its existence is not guaranteed.

Lemma 1 The problem P = (N,A, x, r,Q) has at least one feasible assign-
ment if and only if for all S,∅ ⊆ S ⊆ N , and T,∅ ⊆ T ⊆ A, we have

rT + q−S×(A�T ) ≤ xS + q+
(N�S)×T (2)

Then we call P a feasible problem.

The proof is a standard application of the max-flow min-cut theorem. It is
omited for brevity.
We write P for the set of feasible assignment problems, and Φ(P ), or simply

Φ(x, r;Q) if no confusion can arise, for the set of feasible assignments of a
feasible problem. We write Pu for the subset of P containing the unconstrained
problems (Qia = R+ for all ia).

Let τ(P ) be the set of all entries ia such that yia is constant in Φ(P ).
This contains all ia such that |Qia| = 1, and possibly more. For instance take
N = {1, 2}, A = {a, b} and check that rb = x1 + q+

2b and/or x1 = q−1b implies
y1a = 0, irrespective of q+

1a. More generally, suppose for some S ⊆ N,T ⊆
A, inclusions not both equalities, we have rT + q−S×(A�T ) = xS + q+

(N�S)×T .
4

Combining this with the two accounting identities rT = yS×T + y(N�S)×T and
xS = yS×T + yS×(A�T ), we get

y(N�S)×T + q−S×(A�T ) = yS×(A�T ) + q+
(N�S)×T

⇐⇒ (yS×(A�T ) − q−S×(A�T )) + (q+
(N�S)×T − y(N�S)×T ) = 0

which, together with q− ≤ y ≤ q+, implies y = q− on S × (A�T ) and y = q+

on (N�S)× T .
It is sometimes useful to restrict attention to problems where such implied

constraints do not appear, i.e., the only constant entries result from the capacity
constraints.

Definition 1 A problem P ∈ P is irreducible if (2) is an equality only if
S = N and T = A. This implies τ(P ) = {ia||Qia| = 1}.
The simple proof is omitted for brevity.

3.2 Assignment rules

A bilateral assignment rule selects a feasible assignment y for every problem
P ∈ P. We restrict attention to rules treating all agents, and all resources,

4Check that the simple 2× 2 examples above is of this type.
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symmetrically. We also require that a small change in the demands xi, ra should
have only a small influence on the solution.
If σ is a bijection of N , from the new name i to the old name σ(i), and y ∈

Φ(P ) is an assignment with the old names, the same assignment with the new
names is yσ: yσia = yσ(i)a; define similarly xσ, Qσ, and Pσ = (N,A, xσ, r,Qσ).

Definition 2 An assignment rule F chooses for every feasible problem P =
(N,A, x, r,Q) ∈ P a feasible assignment F (P ) = y ∈ Φ(P ). Moreover the
mapping F meets the following properties:

• Symmetry in N : for any P ∈ P and bijection σ of N , F (P )σ = F (Pσ)

• Symmetry in A: same property after exchanging the roles of N and A

• Continuity of the mapping P 3 (x, r,Q)→ F (P ), for any fixed N,A

We write F for the set of bilateral assignment rules.
The next two properties are critical. We start with the familiar Consistency.

Given a rule F , the constraints Q, and a feasible flow/matrix y ∈ Q, we say that
the matrix y is F -fair for Q if the rule F chooses y in the problem (N,A, x, r,Q)
where xi = y{i}×Afor all i, and ra = yN×{a} for all a.

• Consistency (CSY): every submatrix of a matrix F -fair for Q is F -fair
for the restriction of Q.

Note that if xi = 0 for some i, then yia = 0 for all a, so the submatrix after
deleting row i has all the same sums in rows and columns; therefore we can
simply delete i altogether; similarly if ra = 0. Thus we can always assume when
convenient x, r � 0.
The second key property conveys the idea that exogenous constraints have

no ethical meaning, they are normatively neutral. We use the notation Q[−ia]
for the profile of capacity constraints Q′ such that Q′ia = R+ and Q′jb = Qjb for
any jb 6= ia.

• Constraint Neutrality (NEUT): fix any P = (N,A, x, r,Q) and set
y = F (P ); i) for any Q′ ⊂ Q, if y ∈ Q′ then y = F (P ′) where P ′ =
(N,A, x, r,Q′); ii) for any ia ∈ N×A such that q−ia < yia (resp. yia < q+

ia),
then y = F (P ′) where Q′ia = [0, q+

ia] (resp. [q−ia,∞[) and P ′ = P otherwise

Both statements express a version of "independence of irrelevant constraints",
the first one with respect to a tightening of the constraints from Q to Q′, the
second one with respect to a losening from Q to Q[−ia], when the Qia constraint
does not bind. Satement i) holds whenever F (P ) is the unique assignment ma-
trix minimizing over Φ(P ) some numerical index (or ordinal ordering), possibly
depending on N,A, x and r, but not on Q. Statement ii) holds when the nu-
merical index (or ordering) is convex over the set of feasible assignments of
(N,A, x, r), as is the case for the rules discussed in the next two sections.
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4 Capacited proportional assignment

In the discussion of segregation, the optimality of the proportional assignment
yia = xi·ra

b is the seminal postulate. Note that it can also be characterized by
a single axiom capturing the informational parsimony of this matrix: the entry
yia depends only upon xi, ra, and b.5

In an unconstrained problem P = (N,A, x, r) ∈ Pu, the proportional flow
is the unique minimum of a great variety of functions WP , strictly convex
over Φ(P ). An example is the Atkinson segregation index WP (y) = 1 −∑
N ΠA(yiara )

1
|A|| , and its dual WP (y) = 1 −

∑
A ΠN (yiaxi )

1
|N|| . For any para-

meter p > 1, the function WP (y) =
∑
N×A( yia

xira
)p is another example.6

All assignment rules minimizing the above functions WP over Φ(P ) for ca-
pacity constrained problems P ∈ P meet Definition 1 and Constraint Neutral-
ity.7 Symmetry is clear, and Continuity follows from Berge’s Theorem. But
none of them meet Consistency, that is only achieved by minimizing the follow-
ing (negative of the) entropy function Wen:

Wen(y) =
∑
N×A

yia ln(yia) (3)

To check that the proportional flow is optimal in an unconstrained problem
P ∈ Pu, note that Wen is strictly convex, and(Wen)′(0) = +∞. Therefore the
optimal flow y has yia > 0 whenever xi, ra are both positive, and the KKT
conditions imply for all i, j.a.b (with positive corresponding row or column)

ln(yia) + ln(yjb) = ln(yib) + ln(yja) ⇐⇒ yia
yja

=
yib
yjb

The key to Consistency is that Wen depends on P only through N and A.
Fix N,A, a set of constraints Q, and an assignment matrix y. The latter is
fair for Q if it minimizes Wen when we freeze all the sums y{i}×A and yN×{a}.
If ỹ is a submatrix of y, the sum Wen(ỹ) is simply the subset of the sum
Wen(y) corresponding to the coordinates of ỹ, and the constraints Q̃ are the
same on those coordinates, so that ỹ is still fair. For the other functionsWP (y)
mentioned above, the minimization program solved by ỹ is not comparable to
that solved by y because the parameters xi, ra, have changed.

5By Symmetry we can write yia = f(b, xi, ra). Fixing xi and b we have: ∀r ∈ RA+,
rA = b =⇒

∑
A f(b, xi, ra) = xi. By classic functional equation results this gives the form

f(b, xi, ra) = 1
|A|xi + Λ(b, xi)(ra − 1

|A| b); finally yia = 0 for ra = 0 gives the result.
6 Indeed if we set δia = ( yia

xira
)p−1, the KKT conditions for this program are δia + δjb =

δib + δja, so δia takes is additively separable: δia = αi + βa for some numbers αi, βa. This

implies yia = xira(αi + βa)
1
p−1 , from which the proportional flow easily follows.

7We can also use some convex, but not strictly convex, functions WP derived from other
segregation indices such as the Dissimilarity index WP (y) =

∑
N×A |yia −

xi·ra
b
|, and the

Gini index WP (y) =
∑
A×N×N xixj | yiaxi −

yja
xj
|: the proportional flow is still the unique

minimum in an unconstrained problem, but in a constrained problem we need to deal with
possibly multiple minima.
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We write F en for the assignment rule corresponding to Wen, i.e., for all
P ∈ P, F en(P ) is the unique minimum ofWen over Φ(P ). We give first a para-
metric representation of the assignment F en(P ), that is critical to the axiomatic
characterization of the rule F en in Theorem 1.

We use the notation z ∗ I for the projection of z on the closed real interval
I; so if I = [s, t], z ∗ I is simply the median of z, s, and t. Recall that τ(P ) is
the set of entries ia such that yia is constant in Φ(P ). It contains all ia such
that |Qia| = 1, and only those if P is irreducible.

Proposition 1
For any P ∈ P, the assignment y = F en(P ) is the only one in Φ(P ) that can
be written, for some positive numbers λi, µa, as

yia = (λi · µa) ∗Qia for all i, a /∈ τ(P ) (4)

We speak of the capacited proportional assignment at P .
If P is irreducible (Definition 1), equation (4) holds for all ia.

Theorem 1
The assignment rule F en is characterized, among all rules in F , by the com-
bination of three properties: it picks the proportional flow for an unconstrained
problem; Consistency; and Constraint Neutrality.
We call F en the capacited proportional assignment rule, and F en(P ) .

Both Proposition 1 and Theorem 1 follow the more general Propositions 2
and 3 in the next section.

Remark 1 In the related bilateral rationing model of [14], [15], the capacity
constraints take the simple form Qia is either {0} or R+ for all ia: agents may
not be able to consume all resources. On the other hand the budget balance typ-
ically does not hold so that the demands xi cannot be fully met by the resources
ra and the question is how to ration the resources fairly. The constrained propor-
tional flow defined there coincides with ours for balanced problems. Statement
ii) of Theorem 1 in [14], in the special case of balanced problems, follows from
Proposition 1 above. Statement iii) of that same Theorem 1 is a characeriza-
tion very similar to Theorem 1 above, however it is not a special case of the
present result because it requires the axioms to hold on the larger domain con-
taining unbalanced problems. It is easy to adapt the proof of our Theorem 1 to
bilateral rationing problems with general capacity constraints. The capacited
proportional assignment minimizes

∑
N×AEn(yia)+

∑
N En(xi−yiA) over our

rectangular constraints Q.

5 Capacited welfarist assignments

From now on we do not assume any more that the fair assignment for an un-
constrained problem must be proportional. We construct a large family of as-
signment rules meeting CSY and NEUT, by maximizing a separably additive
welfare objective.
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Fix a strictly convex and smooth function W on ]0,∞[, of which the deriva-
tiveW ′ is continuous and strictly increasing on ]0,∞[. DefineW (0) = limz→0W (z),
which could be +∞. Loosely speaking, our W -welfarist rule selects the assign-
ment minimizing the strictly convex objective

∑
N×AW (yia) over all feasible

assignments. The special case W (yia) = yia ln(yia) yields the capacited propor-
tional assignment..
Proposition 2 below generalizes Proposition 1 by providing the parametriza-

tion (7) of the capacited W -welfarist assignment entirely similar to (4) for the
proportional one. Proposition 3 generalizes Theorem 1 by showing that this rule
is the only extension of the W -welfarist rule to unconstrained problems meeting
CSY and NEUT. However Proposition 3 applies only to welfare functions W
such that W ′(0) = −∞.
Because W (0) =∞ is possible, we define the W -welfarist assignment as the

solution of the program the program

min
y∈Φ(P )

∑
(N×A)�τ(P )

W (yia) (5)

We check it has a unique solution. If W (0) is finite, it is the same program as

min
y∈Φ(P )

∑
N×A

W (yia) (6)

and the strictly convex function W (defined on [0,∞[) has a unique minimum
over the convex compact Φ(P ).

If W (0) = ∞, there is some feasible assignment y such that yia > 0
for all (i, a) ∈ (N × A)�τ(P ) (by definition of τ(P ) and because Φ(P ) is
convex) therefore program (5) is finite, and is equivalent to minimizing the
strictly convex function

∑
(N×A)�τ(P )W (yia) over the compact, convex set

{y ∈ Φ(P )|
∑

(N×A)�τ(P )W (yia) ≤
∑

(N×A)�τ(P )W (yia)}. The claim follows.
Program (5) defines a rule FW that we call theW -welfarist assignment rule,

or W -rule for short. Continuity follows from Berge’s Theorem. It is enough to
consider, for fixed N,A, sequences P t ∈ P such that P t converges to P∞ and
τ(P t) is constant in t; then τ(P∞) ⊇ τ(P t) and for ia ∈ τ(P∞)�τ(P t) the
convergence of ytia to 0 is guaranteed. Symmetry is clear. CSY and NEUT
follow exactly as for the capacited proportional rule.
Understanding the structure of the assignment FW (P ) for any P is critical

to our results. It turns out that this flow has a very simple additive structure,
derived from the familiar KKT conditions for the program (5).
We define the following extension Γ of the inverse of W ′. The domain of

W ′ is R+ and its range an interval [W ′(0),W ′(∞)[ such that W ′(0) ≥ −∞
and W ′(∞) ≤ ∞ . We set: Γ(α) = 0 if α ≤ W ′(0) ; Γ(α) = (W ′)−1(α) if
W ′(0) ≤ α < W ′(∞) ; Γ(α) =∞ if α ≥W ′(∞).

Proposition 2
i) Fix a problem P ∈ P, and a feasible assignment y ∈ Φ(P ). Then y = FW (P )
(y solves program (5)) if and only if there exists two vectors α ∈ RN , β ∈ RA,
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such that for all i ∈ N, a ∈ A:

yia = Γ(αi + βa) ∗Qia for all ia /∈ τ(P ) (7)

ii) If P is irreducible, then FW (P ) meets (7) for all ia.

iii) If P ∈ Pu is an unconstrained problem, then τ(P ) = {ia|xi = 0 and/or
ra = 0}, and system (7) reduces to

yia = max{Γ(αi + βa), 0} for all ia such that xi, ra > 0 (8)

If, in addition, W ′(0) = limz→0W
′(z) = −∞, then

yia = Γ(αi + βa) for all ia such that xi, ra > 0 (9)

Proof of Proposition 2
Statement i) Fix P and note that program (5) is equivalent to minimizing∑

(N×A)�τ(P )W (yia). We restrict attention to the submatrix of y such that
(N ×A)�τ(P ) intersects each row and each column, i.e., we delete any row or
column contained in τ(P ). For simplicity we still write the sets of rows and
columns of the submatrix as N and A. Keep in mind that (N × A)�τ(P ) has
at least two entries in each row and in each column. We adjust the capacities
of rows and columns accordingly: we set x∗i = xi −

∑
a:ia∈τ(P ) yia, and r

∗
a =

ra −
∑
i:ia∈τ(P ) yia

The assignment y = FW (P ) minimizes
∑

(N×A)�τ(P )W (yia) under the fol-
lowing equality and inequality constraints:

y{i}×A�τ(P ) = x∗i , yN×{a}�τ(P ) = r∗a ; yia−q+
ia ≤ 0, q−ia−yia ≤ 0 for ia /∈ τ(P )

The Lagrangien of the problem is L(y, α, β, θ+, θ−), where α ∈ RN , β ∈ RA and
θ+, θ− ∈ RN×A�τ(P )

+ :

L(y, α, β, θ+, θ−) =
∑

(N×A)�τ(P )

W (yia)−
∑
N

αi(y{i}×A−xi)−
∑
A

βa(yN×{a}−ra)+

+
∑

N×A�τ(P )

θ+
ia(yia − q+

ia) +
∑

N×A�τ(P )

θ−ia(q−ia − yia)

We check the qualification constraints. From |N×A�τ(P )| ≥ 2 max{|N |, |A|}
we see that the linear mapping RN×A�τ(P ) 3 y → (y{i}×A, yN×{a}) ∈ RN∪A
is of maximal rank. Second, by definition of τ(P ) and convexity of Φ(P ) there
exist y ∈ τ(P ) such that q−ia < yia < q+

ia for all ia ∈ N × A�τ(P ). Therefore
there exist some KKT multipliers α, β, θ+, θ−, such that

min
y∈Φ∗(P )

∑
(N×A)�τ(P )

W (yia) = min
y∈RN×A�τ(P )

L(y, α, β, θ+, θ−)

12



where Φ∗(P ) is the projection of Φ(P ) on RN×A�τ(P ). Moreover y solves the
Left Hand program above if and only if 1) y solve the Right Hand program; 2) y is
in Φ∗(P ); 3) and the complementarity properties θ+

ia(yia−q+
ia) = θ−ia(q−ia−yia) =

0 hold for all ia ∈ N ×A�τ(P ).
The first order conditions for statement 1) are, for all ia ∈ N ×A�τ(P ):

W ′(yia) = αi + βa − θ+
ia + θ−ia

If q−ia < yia < q+
ia, this reduces to W

′(yia) = αi + βa ⇐⇒ yia = Γ(αi + βa) =
Γ(αi + βa) ∗ Qia. If yia = q−ia we get W

′(yia) = αi + βa + θ−ia =⇒ yia ≥
Γ(αi+βa) =⇒ yia = Γ(αi+βa)∗Qia. Similarly yia = q+

ia gives yia ≤ Γ(αi+βa) =
Γ(αi + βa) ∗Qia.

This proves the “only if”statement.
For the “if”statement we start from y ∈ Φ(P ) and α ∈ RN , β ∈ RA meeting

(7). We set θ+
ia = θ−ia = 0 if q−ia < yia < q+

ia; θ
+
ia = 0 and θ−ia = W ′(yia)−αi−βa

if yia = q−ia; θ
−
ia = 0 and θ+

ia = −W ′(yia) + αi + βa if yia = q+
ia. It is then easy

to check that the projection of y on RN×A�τ(P ) minimizes L(y, α, β, θ+, θ−) in
that entire space.
Statement ii) If P is irreducible, every entry ia ∈ τ(P ) corresponds to a singleton
Qia, where equation (7) is automatically true.
Statement iii) The fact that (7) reduces to (8) if there are no capacity constraints
is clear. For the second statement, note that if W ′(0) = limz→0W

′(z) = −∞,
then for any P ∈ Pu each entry yia is strictly positive provided xi, ra > 0.
Indeed in equation (8) yia = 0 implies αi+βa = −∞. (it is also easy to construct
a perturbation of y improving the objective function if some yia = 0).�

We give some examples of W -rules. A natural subfamily is defined by
the familiar Scale Invariance (SI) property. For any two problems P =
(N,A, x, r,Q) and P ′ = (N,A, δx, δr, δQ), SI requires F (P ′) = δ · F (P ).

Lemma 2: The one dimensional family FW
q

, q ∈ R, contains all scale
invariant W -welfarist assignment rules:
i) W q(z) = zq for q > 1 and for q < 0
ii) W q(z) = −zq for 0 < q < 1
ii) W 0(z) = − ln(z)
ii) W 1(z) = z ln(z)

Proof sketch That all rules FW
p

are SI is clear. Conversely observe that

for any FW the assignment matrix
a b
c d

where all entries are positive and

W ′(a)+W ′(d) = W ′(b)+W ′(c) is fair (in the unconstrained problem). Therefore
SI implies, for all positive a, b, c, d, δ:

W ′(a) +W ′(d) = W ′(b) +W ′(c)⇐⇒W ′(δa) +W ′(δd) = W ′(δb) +W ′(δc)

Assume for simplicty thatW ′ is differentiable (it must be so almost everywhere;
we omit the details of the general argument). Fix a, c, and δ; for any small
enough ε there exists λ > 0 such that W ′(a+ ε)−W ′(a) = W ′(c+λε)−W ′(c).
By the equivalence above, this is equivalent to W ′(δa+δε)−W ′(δa) = W ′(δc+
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λδε)−W ′(δc). This implies W ′′(a)−λW ′′(c) = o(ε) and W ′′(δa)−λW ′′(δc) =
o(ε), where λ depends on ε but must converge by differentiability of W ′. We
get W ′′(a) ·W ′′(δc) = W ′′(c) ·W ′′(δa), from which follows, after rescaling W ′′,
W ′′(ab) = W ′′(a) · W ′′(b) for all a, b > 0. Thus W ′′ is a power function by
standard arguments.�
The capacited proportional rule F en is FW

1

; Γ is the exponential function,
hence the additive parametrization (7) is equivalent to the multiplicative one in
(4).
For FW

2

, Γ is the identity and (7) says that y is the projection on Q of a
separably additive assignment. In an unconstrained problem, the rule chooses

yia =
1

|A|xi +
1

|N |ra −
1

|A| × |N |b

whenever this expression is non negative for all i, a.
The rule FW

0

picks the assignment maximizing the Nash product ΠN×Ayia.
It is the only feasible assignment that we can write as yia = 1

αi+βa
∗Qia.

When q goes to −∞, the assignment FW q

(P ) converges to the egalitarian
assignment F eg(P ), maximizing the leximin ordering of RN×A+ . This assignment
is defined recursively by comparing first mini xi

|A| and mina ra
|N | . If

mini xi
|A| ≤

mina ra
|N | ,

we assign yia = mini xi
|A| to all i achieving the minimum. and all a; we proceed

similarly if mina ra
|N | ≤ mini xi

|A| ; we repeat this operation on the reduced problem
among the unassigned rows and columns, adjusting accordingly the capacities
xi, ra. The egalitarian assignment rule is consistent.

Our last result in this section is about the consistent extension, from un-
constrained to constrained problems, of those welfarist rules such that W ′(0) =
limz→0W

′(z) = −∞. The key fact (see the proof of statement iii) of propo-
sition 2) is that this guarantees that FW gives strictly positive shares in an
unconstrained problem:

• Strict Positivity (SP): for any P ∈ Pu and y = F (P ): {xi, ra > 0} =⇒
yia > 0

Proposition 3 Fix a function W , with a derivative W ′ continuous and
strictly increasing on ]0,∞[, and such that W ′(0) = limz→0W

′(z) = −∞.
Then the W -welfarist assignment rule FW for constrained problems in P is the
unique extension of FW for unconstrained problems satisfying Consistency and
Constraint Neutrality.

Among the scale invariant functions in Lemma 2, the assumption W ′(0) =
−∞ selects all W q such that q ≤ 1. Theorem 1 is just Proposition 3 for the
function W 1. It is an open question whether or not Proposition 3 holds without
the assumption W ′(0) = −∞.
Proof

Step 1 To any F ∈ F meeting CSY and NEUT we associate a rationing rule
to divide any amount of a single resource according to individual claims or
demands. This construction is critical in the proof of Theorem 2 as well.

14



Formally a rationing problem is (N, x, t), where x ∈ RN+ is the profile of
demands, t ≥ 0 is the amount to be divided, and t ≤ xN . A rationing rule h
associates to every problem a division y = h(N, x, t) of t among N such that
0 ≤ y ≤ x and yN = t.8 Although a rationing problem is not a special case
of an assignment problem (there is a single resource but budget balance does
not hold), it is straightforward to adapt the properties of Symmetry w.r.t. N ,
Continuity, and Consistency.
Fix F ∈ F and construct h as follows. Given the rationing problem (N, x, t)

consider the assignment problem P = (N, {a, b}, x, r) where ra = t and rb =
xN − t, and define h(N, x, t) to be the a-column of F (P ). By SYM the choice
of a, b, does not matter; SYM, CONT, and CSY for F imply the same for h.
By Young’s Theorem h is parametrized by a continuous function θ(xi, λ), non
decreasing in λ ∈ R and such that θ(xi,−∞) = 0 and θ(xi,∞) = xi. This
means that for any (N, x, t)

h(N, x, t) = y ⇐⇒ {∃λ : yi = θ(xi, λ) for all i, and
∑
N

θ(xi, λ) = t} (10)

Note that by SYM the rule h is self-dual, h(N, x, t) + h(N, x, xN − t) = x.

Step 2 Still fixing F ∈ F meeting CSY and NEUT, we extend the rationing
rule h just defined to capacited rationing problems (N, x, t, q), where qi =
[q−i , q

+
i ] ⊆ R+ constrains agent i’s share. A division y of t is feasible iff

q−i ≤ yi ≤ min{q+
i , xi}, and such division exists iff q−N ≤

∑
N min{q+

i , xi},
which we assume.
As in Step 1 we consider the assignment problem P = (N, {a, b}, x, r,Q)

where r = (t, xN − t) and Qia = qi, Qib = R+ for all i. Then h(N, x, t, q) is
defined as the a-column of F (P ). We claim that the parametrization θ of h for
ordinary (unconstrained) rationing problems in step 1, determines its extension
to capacited problems as follows. For any (N, x, t, q)

h(N, x, t, q) = y ⇐⇒ {∃λ: yi = θ(xi, λ) ∗ qi and
∑
N

θ(xi, λ) ∗ qi = t} (11)

The proof is by induction on the number k of non trivial constraints qi 6= R+.
The case k = 0 is covered, so we assume (11) holds up to k − 1. Fix (N, x, t, q)
with k non trivial constraints, for instance q1 is non trivial. Replacing q1 by R+

leaves us with the constraints q−1.
If y = h(N, x, t, q−1)meets q1, NEUT (statement i)) implies y = h(N, x, t, q),

while by the inductive assumption there exists λ such that yi = θ(xi, λ) ∗ qi for
i ≥ 2, and y1 = θ(x1, λ) = θ(x1, λ) ∗ q1.

If y /∈ q1, we assume for instance y1 > q+
1 , and we show h1(N, x, t, q) = q+

1 .
Define q∗1 = [q−1 , y1] and q∗i = qi for i ≥ 2. NEUT i) implies h(N, x, t, q∗) = y.
Assume y1 = h1(N, x, t, q) < q+

1 and invoke NEUT ii) to get y = h(N, x, t, q) =
h(N, x, t, q′) where q′1 = [q−1 ,∞[ and q′i = qi for i ≥ 2. By NEUT i) again, we

8See [13], [17], for two surveys on axiomatic properties of rationing rules.
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have then y = h(N, x, t, q∗), a contradiction. The similar proof that y1 < q−1
implies h1(N, x, t, q) = q−1 is omitted.

We still assume y1 > q+
1 , and we compare y = h(N, x, t, q−1) and y =

h(N, x, t, q). We apply the inductive assumption twice: to (N, x, t, q−1) it gives
some λ such that yi = θ(xi, λ)∗qi for all i ≥ 2 and yN�1 = t−y1; to the problem
(N�1, x−1, t − q+

1 , q−1) obtained from (N, x, t, q) by dropping agent 1, we get
µ such that (by CSY) yi = θ(xi, µ) ∗ qi for all i ≥ 2 and yN�i = t− q+

1 . Hence
µ > λ, implying θ(x1, µ) ≥ θ(x1, λ) = y1 > q+

1 , so that y1 = q+
1 = θ(x1, µ) ∗ q1.

This completes the proof of (11) for the case y1 > q+
1 , and the case y1 < q−1 is

treated similarly.

Step 3 Fix now a function W as in the statement of Proposition 3, and assume
from now on that, for unconstrained problems, F is the welfarist rule FW defined
before Proposition 2. Then the corresponding rationing rule hW defined in Step
1, and denoted h for simplicity, takes the following form for every x� 0, t > 0,
and t < xN :

h(N, x, t) = arg min
y∈Φ(N,x,t)

(
∑
N

W (yi) +W (xi − yi))

where Φ(N, x, t) = {y ∈ RN+ |y ≤ x and yN = t}. Strict Positivity guarantees
0 < yi < xi for all i, and the first order optimality conditions are λ ∈ R such
that
The KKT conditions for this program are

∃λ ∈ R such that ∀i ∈ N W ′(yi)−W ′(xi − yi) = λ

Thus a parametric representation of h is the function θ(u, λ) defined as follows

v = θ(u, λ)⇐⇒W ′(v)−W ′(u− v) = λ

where θ is continuous and strictly increasing in both variables. Define now a
second function π(z, λ) by solving the following equation in v for z ≥ 0 and
λ ∈ R:

v = π(z, λ)⇔ v = θ(z + v, λ)⇐⇒W ′(v)−W ′(z) = λ

⇐⇒ π(z, λ) = Γ(W ′(z) + λ) (12)

Recalling our definition of Γ, we have π(0, λ) = 0, π(z, λ) = ∞ if λ + W ′(z) ≥
W ′(∞), and π(z, λ) strictly increases in both variables as long as z > 0 and
λ+W ′(z) < W ′(∞). We check finally that for any z, λ, and any closed interval
Q ⊆ R+

v = π(z, λ) ∗Q⇐⇒ v = θ(z + v, λ) ∗Q (13)

This follows from (12) if v is interior to Q. If v ≥ Q then v = θ(z + v, λ) ∗ Q
implies v ≤ θ(z + v, λ); pick z′ ≤ z such that v = θ(z′ + v, λ) , so that v =
π(z′, λ) ≤ π(z, λ) and we get y = π(z, λ) ∗ Q as desired. The other case is
similar.
Step 4 We fix W as in step 3, and F ∈ F meeting CSY and NEUT, and

equal to FW on Pu. We choose an arbitrary problem P = (N,A, x, r,Q) ∈ P,
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and to show F (P ) = FW (P ) we construct for all ε ≥ 0 an augmented problem
P ε = (N,A ∪ {a∗}, xε, rε, Qε) with one more resource a∗ as follows:

xεi = xi +
ε

|N | for all i ; r
ε = (r, ε) ; Qεia∗ = R+, Qεia = Qia otherwise

Set y = F (P ) and (yε, zε) = F (P ε) where zεi is the ia
∗ coordinate of

F (P ε) and yε is of dimension N × A. By CSY F (P 0) = (y, 0) and by CONT
limε→0(yε, zε) = (y, 0).
Choose any a ∈ A and reduce P ε by dropping all resources except a, a∗, and

adjusting xεi to x
′
i = yεia + zεi . We have y

ε
ia = h(N, x′, ra, Qa) where h is the

capacited rationing method defined in steps 1, 2. Combining (11), (13), and
(12), there exists λa such that

yεia = θ(x′i, λa) ∗Qia = θ(zεi + yεia, λa) ∗Qia = π(zεi , λa) ∗Qia

=⇒ yεia = Γ(W ′(zεi ) + λa) ∗Qia
The equality above holds for all ia ∈ N × A; moreover zεi = Γ(W ′(zεi )) =
Γ(W ′(zεi )+0)∗Qia∗ . We invoke now Proposition 2 because (yε, zε) takes the form
(7): thus (yε, zε) = FW (P ε). Finally limε→0(yε, zε) = FW (P 0) = (FW (P ), 0),
by CONT and CSY of FW .�

6 Consistent assignment rules: a partial charac-
terization

Our last result concerns consistent assignment rules defined for unconstrained
problems. We write Fu the set of such rules.
We already noted that the W -welfarist assignment rule FW ∈ Fu meets

Strict Positivity whenever W ′(0) = −∞. A related property looks at the im-
pact of transfering resources while leaving everything else unchanged. Fix an
assignment rule F ∈ Fu:

• Strict Resource Monotonicity (SRM): for any P, P ′ ∈ Pu and a ∈ A:
{r′a > ra, r

′
b ≤ rb for all b 6= a, P and P ′ identical otherwise} =⇒ {y′ia >

yia whenever xi > 0}; and a similar statement by exchanging the roles of
N and A

Under CSY, SRM implies SP. Indeed fix any P ∈ Pu and i, a such that
xi, ra > 0; augment P to P ∗ by adding a resource a∗ with ra∗ = 0. By CSY
F (P ∗) is F (P ) augmented by a null column; when we next transfer half of ra
from a to a∗, the entry yia decreases strictly by SRM.

Theorem 2 For any assignment rule F ∈ Fu the two following statements
are equivalent:

i) F meets CSY, and SRM
ii) F is a W -welfarist rule in Pu, and W ′(0) = −∞.
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Combining Theorem 2 and Proposition 3 gives the

Corollary For any assignment rule F ∈ F the two following statements are
equivalent:

i) F meets NEUT, CSY, and SRM
ii) F is a W -welfarist rule in P, and W ′(0) = −∞.
Proof of Theorem 2

Statement ii) =⇒ i)
We need only to check hat FW meets SRM whenever W ′(0) = −∞. Fix

P, P ′ and a∗ as in the premises of SRM. We can assume xi > 0 for all i because
CSY allows us to delete a null row, and rb > 0 because CSY allows us to delete
a null column (that remains null in P and P ′). If ra∗ = 0, the desired conclusion
y′ia∗ > 0 follows from Strict Positivity, so we assume ra∗ > 0 as well.
Apply (9) to P and P ′: yia = Γ(αi + βa), y′ia = Γ(α′i + β′a) for all i, a.

We write ∂ia = y′ia − yia, and note that for any distinct i, j ∈ N and distinct
a, b ∈ A, the following system

{∂ia, ∂jb ≥ 0 and ∂ib, ∂ja ≤ 0} =⇒ all inequalities are equalities (14)

This follows easily from ∂ia ≥ 0 ⇐⇒ αi + βa ≤ α′i + β′a and ∂ia > 0 ⇐⇒
αi + βa > α′i + β′a.
We show ∂1a∗ > 0 (where 1 is arbitrary) by contradiction: we assume ∂1a∗ ≤

0 and distinguish two cases. In Case 1 we have ∂1a ≤ 0 for all a 6= a∗. Then
∂1a = 0 for all a (because x1 = x′1). As ra increases there is an agent noted 2
such that ∂2a∗ > 0. Applying (14) to 1, 2, a∗, b, for any b 6= a∗, gives ∂2b > 0.
This contradicts x2 = x′2. In the remaining Case 2 there is some a2 6= a∗ such
that ∂1a2 > 0. Because ra2 decreases weakly, there is an agent 2 such that
∂2a2 < 0. Applying (14) to 1, 2, a∗, a2, gives ∂2a∗ < 0. Then ∂2a∗ , ∂2a2 < 0
and x2 = x′2 imply the existence of a3 such that ∂2a3 > 0. Applying (14) to
1, 2, a2, a3, gives ∂1a3 > 0. Then we find agent 3 such that ∂3a3 < 0, and use
(14) repeatedly to show ∂3a∗ , ∂3a2 < 0. The induction argument is now clear:
we find agents 1, · · · , k and resources a∗ = a1, a2, · · · , ak, such that

∂iak > 0 if i < k ; ∂iak < 0 if i ≥ k with the exception of ∂1a∗ ≤ 0

We reach a contradiction when k = inf{|N |, |A|}. If k = |N | ≤ |A| we have
y′ia∗ < yia∗ for all i, whereas r′a∗ > ra∗ ; if k = |A| ≤ |N | we have y′ka < yka for
all a ∈ A, whereas x′k = xk.

Statement i) =⇒ ii)
We fix F ∈ Fu meeting CSY, and SRM. Recall that F meets SP, and note

that it meets also

• Strict Ranking (SRK): for any P ∈ Pu and any i, j, a : {xi > xj and
ra > 0} =⇒ yia > yib ; and a similar statement after exchanging the roles
of N and A

To check this we construct the problem P ′ where x′i = x′j =
xi+xj

2 , and
everything else is as in P . By Symmetry y′ia = y′ib; P obtains from P ′ by
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transferring xi−xj
2 from resource b to resource a, so by SRM yia > y′ia = y′ib >

yib.
The proof consists of 6 steps.

Step 1 We associate to F the rationing rule h(N, x, t) as in Step 1 of the
proof of Proposition 3. In this step we discuss properies of h, and a parame-
trization θ(xi, λ) of h as in (10). Recall λ ∈ R ∪ {−∞,+∞}, θ is continuous
and weakly increasing in λ, and θ(xi,−∞) = 0 and θ(xi,∞) = xi. In particular
θ(0, λ) = 0 for all λ. Without loss we assume that θ is "clean" in the sense that
the two functions θ(·, λ) and θ(·, λ′) are different if λ 6= λ′.

SRM implies at once that t→ hi(N, x, t) is strictly increasing for all i such
that xi > 0. This in turn means that θ(z, λ) increases strictly in λ if z > 0.
Suppose, on the contrary, θ(z, λ) = θ(z, λ′) and λ < λ′. Because θ is clean there
is some z′ such that θ(z′, λ) < θ(z′, λ′), but then SRM is violated going from
({1, 2}, (z, z′), θ(z, λ) + θ(z′, λ)) to ({1, 2}, (z, z′), θ(z, λ′) + θ(z′, λ′)).

SRK implies similarly {xi > xj , t > 0} =⇒ hi(N, x, t) > hj(N, x, t), from
which we see that θ(z, λ) increases strictly in z (we omit the easy argument).
Recall that h is self-dual: h(N, x, t) +h(N, x, xN − t) = x for all x, t. Thus SRK
yields {xi > xj , t < xN} =⇒ xi−hi(N, x, t) > xj−hj(N, x, t), and this implies
that θ(z, λ) is 1-contracting in z when λ 6= −∞,+∞:

z < z′ =⇒ θ(z′, λ)− θ(z, λ) < z′ − z for all z, z′ and all λ 6= −∞,+∞ (15)

Fix anyN, x, λ and apply Self duality to the problem (N, x, t =
∑
N θ(xi, λ)):

there is some λ′ such that θ(xi, λ)+θ(xi, λ
′) = xi for all i. Fixing λ and varying

the pair N, x, we see that λ′ does not depend on N, x (recall θ increases strictly
in λ). This defines the "inverse" λ−1 of λ by the identity

θ(z, λ) + θ(z, λ−1) = z for all z (16)

For instance ∞−1 = −∞. Moreover self duality gives h(N, x, xN2 ) = 1
2x, which

means there is some λ∗ such that θ(z, λ∗) = z
2 for all z. Thus (λ∗)−1 = λ∗.

Finally λ ≤ λ∗ ⇐⇒ λ∗ ≤ λ−1.

Step 2We define now an alternative parametrization π(z, λ) of the rationing
rule h, exactly as we did in Step 3 of the proof of Proposition 3. That is, for
z ≥ 0 and λ 6= −∞,+∞, π(z, λ) solves the following equation in v :

v = π(z, λ)⇔ v = θ(z + v, λ) (17)

Because θ(z, λ) is 1-contracting in z, this equation has at most one solution. In
particular π(0, λ) = 0 for all λ, and π(z, λ∗) = z for all z.

We check that π(z, λ) is always defined if λ ≤ λ∗: we have 0 ≤ θ(z + 0, λ)
and θ(z + v, λ) ≤ θ(z + v, λ∗) = z+v

2 ≤ v for v ≥ z, so the claim follows by
continuity of z → θ(z, λ). For λ ≥ λ∗ we set

κλ = lim
x→∞

{x− θ(x, λ)}

which is positive and possibly infinite. We claim that (17) has a solution if and
only if z < κλ. Fix such a pair z, λ, and choose x such that z < x− θ(x, λ)⇐⇒
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θ(z + v, λ) < v for v = x − z, so the “if” statement follows as above by by
continuity of θ in z. If z ≥ κλ, then x − θ(x, λ) < z for all x as x − θ(x, λ)
increases strictly. Hence v < θ(z + v, λ) for v = x− z, where v ranges over R+.

To sum up, π(z, λ) is defined for λ ∈ R and z ∈ [0, κλ[, and we keep in mind
κλ =∞ whenever λ ≤ λ∗. Moreover λ→ κλ is weakly decreasing.

Continuity and monotonicity properties. By (17) and continuity of θ, the graph
of π is closed hence π itself is continuous. Moreover z → π(z, λ) increases strictly
for all λ; and λ→ π(z, λ) increases strictly for z > 0.
For the former claim fix λ, z, z′ such that z < z′ < κλ. Set v = π(z, λ), v′ =

π(z′, λ). As θ increases strictly in z, we have v < θ(z′ + v, λ), while v′ =
θ(z′ + v′, λ); so v′ = v is impossible, and v′ < v contradicts the fact that θ is
1-contracting in z (as t→ t− θ(z′ + t, λ) decreases from v′ to v).

For the latter claim fix λ, λ′ such that λ < λ′, and z, 0 < z < κλ′ . Set
v = π(z, λ), v′ = π(z, λ′). As θ increases strictly in λ because z > 0, we have
v < θ(z+v, λ′), while v′ = θ(z+v′, λ′). Thus v′ ≤ v contradicts the 1-contracting
property of θ exactly as in the previous paragraph.

Self-duality properties.We check first

lim
z→κλ

π(z, λ) = κλ−1 (18)

Indeed (16) implies κλ−1 = limx→∞ θ(x, λ), and if κλ = ∞ the equality
limz→∞ π(z, λ) = limx→∞ θ(x, λ) is clear by definition of π. If on the other hand
κλ <∞, then λ ≥ λ∗ and κλ−1 =∞, and we must check limz→κλ π(z, λ) =∞.
Fix an arbitrary large w > 0, an x > w + κλ, and z such that x − θ(x, λ) <
z < κλ. Then π(z, λ) is well defined and θ(z + (x − z), λ) > (x − z) implying
π(z, λ) > (x− z) because θ is 1-contracting in z, and in turn π(z, λ) > w.
Now (16) gives for all z < κλ:

v = π(z, λ)⇔ z = π(v, λ−1) (19)

where y < κλ−1 is a consequence of (18).

Step 3 We use now the representation π of the rationing rule h to describe
the property of F -fairness of a matrix y ∈ RN×A+ . Recall that y is F -fair if
y = F (N,A, x, r) for x, r obtained by summing respectively the rows and the
columns of y. CSY says that every submatrix of a matrix F -fair is F -fair.

We write the a-column of y as y[a], and prove first
Fact 1: If y is F -fair and rb > 0 for all b ∈ A (no null column in y), then for
any a ∈ A there is a unique parameter λb ∈ R, one for each b 6= a, such that

yib = π(yia, λb) for all i ∈ N , all b ∈ A�{a} (20)

Indeed for each b 6= a the reduced N×{a, b} matrix [y[a], y[b]] is F -fair, therefore
y[b] is just h(N, xab, rb) for the profile of demands xabi = yia + yib. By definition
of the parametrization θ, there is some λb such that yib = θ(xabi , λb). We cannot
have λb = ±∞ because no column of y is null. Thus yib = θ(xabi , λb)⇐⇒ yib =
π(yia, λb) for all i, as claimed.

20



System (20) is written below as y[b] = π(y[a], λb). Now we prove the converse
statement of Fact 1:
Fact 2: Fix a ∈ A and for each b 6= a some parameter λb ∈ R. Choose a column
y[a] such that 0 ≤ yia < minb∈A�{a} κλb for all i, and define y[b] = π(y[a], λb).
Then the matrix y = [y[a], y[b]]b∈A�{a} is fair.
Proof If y[a] = 0 the statement is trivial, so we assume without loss y[a] 6= 0.

Therefore y[b] 6= 0 for all b as well (because z > 0 =⇒ π(z, λ) > 0). Let x, r
be the sums of rows and columns of y, and ỹ = F (x, r). We show y = ỹ. By
the above observation there are parameters λ̃b such that ỹ[b] = π(ỹ[a], λ̃b) for
all b 6= a. Assume first y[a] = ỹ[a]. As y and ỹ have the same column sums,

this implies
∑
N π(yia, λb) =

∑
N π(yia, λ̃b) for all b 6= a, hence λb = λ̃b because

π increases strictly in λ for yia > 0 (and is constant if yia = 0), and we are
done. Assume next y[a] 6= ỹ[a] and partition N as N+ = {i ∈ N |yia > ỹia}
and N− = {i ∈ N |yia ≤ ỹia}, both non empty. Define similarly A+ = {b ∈
A�{a}|λb ≥ λ̃b} and A− = {b ∈ A�{a}|λb < λ̃b}, where one set could be
empty. Write δib = yib − ỹib. The monotonicity properties of π imply δib > 0 if
i ∈ N+, b ∈ A+, and δib ≤ 0 if i ∈ N−, b ∈ A−. Therefore∑

N+

δia > 0 ,
∑
N−

δia < 0 ,
∑

N+×A+

δib > 0 ;
∑

N−×A−
δib ≤ 0

We derive first a contradiction if A+ 6= ∅, by summing up all columns in
A+ ∑

N+×A+

δib +
∑

N−×A+

δib = 0 =⇒
∑

N−×A+

δib < 0

then summing all rows in N−∑
N−×A−∪{a}

δib +
∑

N−×A+

δib = 0 =⇒
∑

N−×A+

δib > 0

Thus A+ = ∅ and A− = A�{a}. Now we sum the columns in A−, then the
rows in N+ ∑

N+×A−
δib +

∑
N−×A−

δib = 0 =⇒
∑

N+×A−
δib ≥ 0

and
∑
N+

δia +
∑

N+×A−
δib = 0 =⇒

∑
N+×A−

δib < 0

another contradiction.

Step 4 We define now an inner product for the parameters λ ∈ R, that
generalizes the inverse operation discussed in steps 1,2. Fix two such parameters
λ, µ, not necessarily distinct. We will define the product λ ∗ µ by the equality
π(π(z, λ), µ) = π(z, λ ∗ µ), for all z such that this is well defined.
We claim that π(π(z, λ), µ) is well defined if and only if z < π(κµ, λ

−1), where
we use the convention π(z, λ) = κλ−1 if z ≥ κλ. Supose first λ ≤ λ∗ so that
π(z, λ) is well defined for all z and we only need π(z, λ) < κµ. We saw in step
2 that limz→∞ π(z, λ) = κλ−1 , so there are no restrictions on z if κµ ≥ κλ−1 ,
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just as we claim: π(κµ, λ
−1) = κλ = ∞; if on the other hand κµ < κλ−1 ,

then the only restriction is π(z, λ) < κµ ⇐⇒ z < π(κµ, λ
−1). Suppose next

λ > λ∗, then we need z < κλ and π(z, λ) < κµ. We know from step 2 that
limz→κλ π(z, λ) = ∞. If κµ < ∞ we have π(z, λ) < κµ ⇐⇒ z < π(κµ, λ

−1),
and π(κµ, λ

−1) < limz→∞ π(z, λ−1) = κλ, proving the claim. If κµ = ∞, we
only need z < κλ, and with our convention π(κµ, λ

−1) = κλ, and the proof is
complete.
We fix λ, µ and we write J(λ, µ) =]0, π(κµ, λ

−1)[ for the interior of the
interval just discussed. We also fix a, b, cdistinct in A. For an arbitrary profile
z = (zi) ∈ J(λ, µ)N we construct the N × {a, b, c} assignment matrix y with
strictly positive entries:

yia = zi , yib = π(zi, λ) , yic = π(π(zi, λ), µ) for all i

Setting z′i = yib, an equivalent description of the matrix is

yia = π(z′i, λ
−1) , yib = z′i , yic = π(z′i, µ) for all i

The matrix y is F -fair by Fact 2 in step 3 applied to the latter expression. By
Fact 1 applied to the former expression, there exists a parameter ρ such that
yic = π(yia, ρ). This shows π(π(zi, λ), µ) = π(zi, ρ) for all zi. Clearly ρ is
unique, and in fact it does not depend at all on the choice of the zi-s: if we
take two such profiles overlapping at z1, say, then π(z1, ρ) is the same for both
profiles, implying that ρ did not change. Thus the definition of λ ∗ µ ∈ R is
complete and we have

π(π(z, λ), µ) = π(z, λ ∗ µ) for all z < π(κµ, λ
−1) (21)

The identity π(z, λ∗) = z (step2) means that λ∗ is the neutral element of
this operation, and (19) implies λ ∗ λ−1 = λ∗.

Step 5 We show that λ ∗µ is an associative product, and derive an additive
representation of this operation from the celebrated Associativity Theorem ([1],
[12]).
For any three parameters λ, µ, v, associativity follows the repeated applica-

tion of (21):

π(z, (λ∗µ)∗v) = π(π(z, (λ∗µ), v) = π(π(π(z, λ), µ), v) = π(π(z, λ), µ∗v) = π(z, λ∗(µ∗v))

where those expressions are all well defined for z in a positive interval [0,K[.
For instance π(π(π(z, λ), µ), v) is well defined whenever π(z, λ) is well defined,
and π(z, λ) < π(κv, µ

−1), which amounts to z < κλ and z < π(π(κv, µ
−1), λ−1).

We omit the similar arguments for the other four terms.
Associativity of ∗ implies the identity (λ ∗ µ) ∗ (µ−1 ∗ λ−1) = λ∗, therefore

(λ ∗ µ)−1 = µ−1 ∗ λ−1.
The next two critical properties of ∗ are the continuity and strict monotonic-

ity of f , f(λ, µ) = λ ∗ µ. For continuity pick any two λ, µ and observe that in a
small enough neighborhood of (λ, µ), equation (21) in z holds on a non empty
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open interval ]0,K[ (because π(κµ, λ
−1) decreases in both λ and µ). As π is

strictly monotonic in both variables, this means that f is defined in this neigh-
borhood by equation (21) at a single value z, therefore its graph is closed by
continuity of π. The same local argument, and strict monotonicity of π in λ,
show that f is strictly monotonic.
By Aczel’s Theorem (section 6.2 in [1]) an associative, continuous, and

strictly monotonic product ∗ in R is represented as follows by a continuous
and strictly increasing function g on R:

λ ∗ µ = g−1(g(λ) + g(µ)) for all λ, µ ∈ R

In particular g(λ∗) = 0 is the neutral element, and λ ∗ λ−1 = λ∗ becomes
g(λ−1) = −g(λ).
Thus g is an homeomorphism of R into its range, and its range must be R:

it is an interval stable by addition and symmetry around 0). We use now the
new variable β = g(λ) to parametrize the rationing rule h: we set θ̃(z, β) =

θ(z, g−1(β)) for β ∈ R, and θ̃(z,−∞) = θ(z,−∞) = 0, θ̃(z,∞) = θ(z,∞) =

xi. The rule h is still represented by θ̃ through property (10), and the entire
discussion of steps 1 to 4, including the definition of π̃ through (17), the domain
restriction κ̃β = κg−1(β), and the regularity properties of θ̃ and π̃, are preserved.
The advantage is that the equation (21) now takes the form

π̃(π̃(z, β), γ) = π̃(z, β + γ) for all z < π̃(κ̃γ ,−β)

Step 6 We derive finally the desired representation of F as a W -welfarist
assignment rule. We will construct the functions W,Γ in statement statement
iii) of Proposition 2.
First we check that the supremum of π̃(1, β) over all β for which it is defined

(i.e., such that 1 < κ̃β), is ∞. By continuity of θ̃, for any ∆ > 0 there exists β
such that ∆− θ̃(∆ + 1, β) = 0, because this expression is ∆ > 0 at β = −∞ and
−1 at β =∞. This equality is just ∆ = π̃(1, β). Thus the range of β → π̃(1, β)
is R+.

We fix now an arbitrary problem (N,A, x, r) with all xi, ra > 0, and set
y = F (N,A, x, r). Fix an arbitrary a ∈ A and use Fact 1 in step 3: for each
b 6= a there is a parameter βb such that y[b] = π̃(y[a], βb). On the other hand the
argument in the previous paragraph shows that for each i there is a parameter
αi such that yia = π̃(1, αi). Combining these equations gives yib = π̃(yia, βb) =
π̃(π̃(1, αi), βb) = π̃(1, αi + βb) for all i, all b ∈ A�{a}. Setting αi = 0 implies
finally

yib = π̃(1, αi + βb) for all i ∈ N, b ∈ A (22)

Let β be the upper bound of the domain of definition of π̃(1, β). If β < ∞
we have β = min{β|κ̃β ≤ 1}, because κ̃β is continuous and weakly increasing
when finite. Define the function Γ on ]−∞, β[ as follows

Γ(−∞) = 0 ; Γ(α) = π̃(1, α) if −∞ < α < β ; Γ(α) =∞ if α ≥ β
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It is an increasing homeomorphism from [−∞, β] into [0,∞], hence its in-
verse W ′ is also an homeomorphism from [0,∞] into [−∞, β]; in particular
limz→0W

′(z) = −∞, limz→∞W ′(z) = β. This is precisely the connexion be-
tween W ′ and Γ in Proposition 2, and the system (22) is exactly (9). We
conclude from statement iii) that y is W -welfarist whenever all xi, ra > 0; if
some rows or columns are null CSY allows us to drop them and maintain the
statement that y is the W -welfarist assignment.�

7 Concluding comments

1. Within the set of unconstrained assignments, Theorem 2 is a partial charac-
terization of theW -welfarist rules, limited to those ruling out null shares, which
amounts to imposeW ′(0) = −∞ on the welfare function. This excludes a whole
range of interesting welfarist rules, such as the scale invariant W q in Lemma 2
for q > 1. An obvious next step is to relax the assumption W ′(0) = −∞ and
look for a more general characterization result. Ideally one would even capture
consistent rules such as the egalitarian rule, equalizing the entries of the assign-
ment matrix by maximizing the leximin ordering; however the latter rule cannot
be described as minimizing a convex objective function
2. Proposition 3 is an extension result, from rules defined for unconstrained

problems in Pu to capacited problems in P. As above it is important to under-
stand if and how the extension result is preserved when we drop the assumption
W ′(0) = −∞. A more diffi cult question is to deal with more general types of
constraints than the “rectangular” ones we assume here. For instance Balin-
ski and Demange [2] consider bounds on the sums in rows and columns of the
assignment matrix; one could also think of linear constraints cutting across
the entries. A plausible conjecture is that, again, minimizing the welfare sum∑
N×AW (yia) is the only consistent extension.
3. The bilateral rationing model developed in [14], [15] is a direct gener-

alization of the present model, if one incorporates our more general capacity
constraints. In these papers, like here, the grand goal is to capture the struc-
ture of consistent bilateral rationing rules, but Moulin and Sethuraman impose
an axiom, Merging of Identically connected Resource-types (MIR), that has no
compelling counterpart in teh capacited problem, and moreover forces the pro-
portional rule for unconstrained problems. Thus the reserach agenda is to drop
MIR and explore the rich family of consistent bilateral rationing rules, first in
unconstrained problems, then with more general capacity constraints.
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